The Journal of Organic Chemistry
Article
76%) as a white solid (mp 123−124 °C). 1H NMR (CDCl3, 500 MHz) δ
ppm 2.18 (s, 6 H) 2.92 (dt, J = 11.35, 6.80 Hz, 1 H) 4.01 (d, J = 11.35 Hz,
1 H) 5.18 (dd, J = 9.31, 6.59 Hz, 2 H) 6.27 (dt, J = 9.31, 3.07 Hz, 2 H)
6.71 (t, J = 3.18 Hz, 2 H); 13C NMR (CDCl3, 100 MHz) δ ppm 29.8
(CH3) 38.4 (CH) 70.2 (CH) 122.1 (CH) 126.7 (CH) 131.4 (CH)
203.3 (C); GC−MS (EI) 194 ([M]+, 0.1%) 147 (58%) 129 (15%) 105
(16%) 103 (11%) 91 (87%) 77 (18%) 65 (15%) 51 (11%) 43 (100%) 39
(11%).
(2) Reviews on TEMPO-based oxidants and example oxidations:
(a) Vogler, T.; Studer, A. Synthesis 2008, 2008, 1979−1993. (b) Bobbitt,
J. M.; Bruckner, C.; Merbouh, N. Org. React. 2009, 74, 103−424.
̈
(c) Montanari, F.; Quici, S.; Henry-Riyad, H.; Tidwell, T. T.; Studer, A.;
Vogler, T. 2,2,6,6-Tetramethylpiperidin-1-oxyl. In Encyclopedia of
Reagents for Organic Synthesis; John Wiley & Sons: New York, 2007.
(d) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901−
16910. (e) Garcia-Mancheno, O.; Stopka, T. Synthesis 2013, 45, 1602−
̃
Relative Reactivity Protocols. Procedure for Relative Reactivity
Study under Unassisted Conditions. In a vial equipped with a stir bar
were added benzyl alcohol (0.108 g, 1 equiv), a competing alcohol (1
equiv), and CH2Cl2 (5 mL). To this was added 1a (0.600 g, 2.0 equiv),
and the mixture was allowed to stir for 12 h. An aliquot of the crude now-
1611.
(3) Examples of other nitroxides and their uses: (a) Iwabuchi, Y. Chem.
Pharm. Bull. 2013, 61, 1197−1213. (b) Shibuya, M.; Nagasawa, S.;
Osada, Y.; Iwabuchi, Y. J. Org. Chem. 2014, 79, 10256−10268.
(c) Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org. Chem.
2009, 74, 4619−4622. (d) Likhtenshtein, G. I.; Yamauchi, J.; Nakatsuji,
S.; Smirnov, A. I.; Tamura, R. Nitroxides; Wiley-VCH: Weinheim,
Germany, 2008.
1
completed oxidation mixture was obtained and analyzed by H NMR.
Integration of the representative peaks of benzyl alcohol and the
competing alcohol and/or of their corresponding carbonyl species was
used to obtain the relative reactivities by the ratio of the peaks.
Experimentally derived reactivities are noted in the paper.
(4) Information on TEMPO-based oxoammonium salts and some of
their reactions relevant to this paper: (a) Leadbeater, N. E.; Bobbitt, J.
M. Aldrichimica Acta 2014, 47, 65−74. (b) Mercadante, M. A.; Kelly, C.
B.; Bobbitt, J. M.; Tilley, L. J.; Leadbeater, N. E. Nat. Protoc. 2013, 8,
666−676. (c) Kelly, C. B. Synlett 2013, 24, 527−528. (d) Bobbitt, J. M.;
Procedure for Relative Reactivity Study under Base-Assisted
Conditions. In a vial equipped with a stir bar were added benzyl
alcohol (0.108 g, 1 equiv), a competing alcohol (1 equiv), and CH2Cl2
(5 mL). To this mixture was added 2,6-lutidine (0.225 g, 2.1 equiv), and
the subsequent mixture was allowed to stir for 5 min. After this time, 1a
(0.600 g, 2.0 equiv) was added, and the mixture was allowed to stir for 12
h. An aliquot of the crude now-completed oxidation mixture was
Merbouh, N. Org. Synth. 2005, 82, 80−86. (e) Richter, H.; Frohlich, R.;
̈
Daniliuc, C.-G.; García Mancheno, O. Angew. Chem., Int. Ed. 2012, 51,
̃
8656−8660. (f) Rohlmann, R.; Stopka, R.; Richter, H.; García
1
obtained and analyzed by H NMR. Integration of the representative
Mancheno, O. J. Org. Chem. 2013, 78, 6050−6064. (g) Lackner, A.
̃
peaks of benzyl alcohol and the competing alcohol and/or of their
corresponding carbonyl species was used to obtain the relative
reactivities by the ratio of the peaks. Experimentally derived reactivities
are noted in the paper.
D.; Samant, A. V.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14090−
14093. (h) Richter, H.; García Mancheno, O. Org. Lett. 2011, 13, 6066−
̃
6069. (i) Richter, H.; Rohlmann, R.; García Mancheno, O. Chem. - Eur. J.
̃
2011, 17, 11622−11627. (j) Wertz, S.; Kodama, S.; Studer, A. Angew.
Chem., Int. Ed. 2011, 50, 11511−11515.
ASSOCIATED CONTENT
* Supporting Information
(5) Information on other oxoammonium salts and their reactions:
(a) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon, M. J.
Chem. Commun. 2014, 50, 4524−4543. (b) Wertz, S.; Studer, S. Green
Chem. 2013, 15, 3116−3134. (c) Rychnovsky, S. D.; Beauchamp, T.;
Vaidyanathan, R.; Kwan, T. J. Org. Chem. 1998, 63, 6363−6374.
(d) Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org. Chem.
1996, 61, 1194−1195. (e) Tanaka, H.; Kawakami, Y.; Goto, K.;
Kuroboshi, M. Tetrahedron Lett. 2001, 42, 445−448. (f) Shibuya, M.;
Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 4619−
4622. (g) Hayashi, M.; Shibuya, M.; Iwabuchi, Y. Org. Lett. 2012, 14,
154−157. (h) Kelly, C. B.; Mercadante, M. A.; Hamlin, T. A.; Fletcher,
M. H.; Leadbeater, N. E. J. Org. Chem. 2012, 77, 8131−8141. (i) Hamlin,
T. A.; Kelly, C. B.; Leadbeater, N. E. Eur. J. Org. Chem. 2013, 2013,
3658−3661.
■
S
1H, 13C, and 19F NMR spectra of the compounds are presented.
Energies and Cartesian coordinates are provided for all stationary
points as well as intrinsic reaction coordinate experiments. The
Supporting Information is available free of charge on the ACS
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
∥These authors contributed equally to this work.
(6) (a) Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14,
245−251. (b) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.;
Ripin, D. H. B. Chem. Rev. 2006, 106, 2943−2989. (c) Dugger, R. W.;
Ragan, J. A.; Ripin, D. H. B. Org. Process Res. Dev. 2005, 9, 253−258.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(7) Semmelhack, M. F.; Schmid, C. R.; Cortes
1986, 27, 1119−1122.
́
, D. A. Tetrahedron Lett.
■
This work was supported by the National Science Foundation
(CAREER Award CHE-0847262) (T.A.H., C.B.K., R.J.W.,
N.E.L.), the University of Connecticut Office of Undergraduate
Research (J.M.O., R.J.W.) and Holster Scholars First-Year
Project (J.M.O.), and by Stonehill College (L.J.T., R.J.W.). We
would like to thank Dr. Christian Hamann of Albright College for
assistance throughout the project. We would also like to thank
(8) Bobbitt, J. M.; Bartelson, A. L.; Bailey, W. F.; Hamlin, T. A.; Kelly,
C. B. J. Org. Chem. 2014, 79, 1055−1067.
(9) Bailey, W. F.; Bobbitt, J. M.; Wiberg, K. B. J. Org. Chem. 2007, 72,
4504−4509.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,
́ ́
Drs. James M. Bobbitt, Robert R. Birge, and Jose A. Gascon of the
University of Connecticut for helpful discussions.
REFERENCES
■
(1) (a) Smith, M. B.; March, J. March’s Advanced Organic Chemistry,
5th ed.; J. W. Wiley: New York, 2001. (b) Backvall, J.-E., Ed. Modern
̈
Oxidation Methods; WILEY-VCH: Weinheim, 2004. (c) Trost, B. M.;
Fleming, I. Comprehensive Organic Synthesis: Selectivity, Strategy, and
Efficiency in Modern Organic Chemistry; Pergamon Press: Oxford, U.K.,
1991. (d) Caron, S. Practical Synthetic Organic Chemistry: Reactions,
Principles, and Techniques; WILEY-VCH: Weinheim, 2011.
̈
S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Q
J. Org. Chem. XXXX, XXX, XXX−XXX