SCHEME 1. Cr(VI)-Mediated Oxidative Rearrangement of
Tertiary Allylic Alcohols
Oxidative Rearrangement of Tertiary Allylic
Alcohols Employing Oxoammonium Salts
Masatoshi Shibuya, Masaki Tomizawa, and
Yoshiharu Iwabuchi*
Department of Organic Chemistry, Graduate School of
Pharmaceutical Sciences, Tohoku UniVersity, Aobayama,
Sendai 980-8578, Japan
enables the facile and efficient oxidative rearrangement of a
variety of tertiary allylic alcohols.
An exploratory experiment was started by screening the
reactivity of readily available TEMPO-derived oxoammonium
salts with 1-phenylcyclohex-2-en-1-ol (1a) as the substrate
(Table 1).5i,8 It was found that TEMPO+ species carrying bulky,
poor nucleophilic anions, such as BF4- 2a or SbF6- 2b, exhibit
excellent reactivity to furnish 3-phenylcyclohex-2-en-1-one (1b)
in 95% yield within 3 min at room temperature (entries 1 and
ReceiVed March 22, 2008
2). On the other hand, TEMPO+Br3 (2c) and TEMPO+Cl-
-
(2d) are completely ineffective for the same reaction (entries 3
and 4). It is important to point out that typical TEMPO oxidation
conditions with NaOCl, PhI(OAc)2, or Oxone as the co-oxidant
(3) (a) Takano, S.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem Commun.
1989, 271–272. (b) Majetich, G.; Lowery, D.; Khetani, V. Tetrahedron Lett.
1990, 31, 51–54. (c) Luzzio, F. A.; Moore, W. J. J. Org. Chem. 1993, 58, 2966–
2971. (d) Majetich, G.; Song, J.-S.; Leigh, A. J.; Condon, S. M. J. Org. Chem.
1993, 58, 1030–1037. (e) Guevel, A.-J.; Hart, D. J. J. Org. Chem. 1996, 61,
465–472. (f) Trost, B. M.; Pinkerton, A. B. Org. Lett. 2000, 2, 1601–1603. (g)
Piers, E.; Walker, S. D.; Armbrust, R. J. Chem. Soc., Perkin Trans. 1 2000,
635–637. (h) Nagata, H.; Miyazawa, N.; Ogasawara, K. Chem. Commun. 2001,
1094–1095. (i) Hanada, K.; Miyazawa, N.; Ogasawara, K. Org. Lett. 2002, 4,
4515–4517. (j) Muratake, H.; Natsume, M. Tetrahedron Lett. 2002, 43, 2913–
2917. (k) Mohr, P. J.; Halcomb, R. L. J. Am. Chem. Soc. 2003, 125, 1712–
1713. (l) Bohno, M.; Imase, H.; Chida, N. Chem. Commun. 2004, 1086–1087.
(m) Dom´ınguez, M.; Alvarez, R.; Martras, S.; Farre´s, J.; Pare´s, X.; de Lera,
A. R. Org. Biomol. Chem. 2004, 2, 3368–3373. (n) Mandal, M.; Yun, H.; Dudley,
G. B.; Lin, S.; Tan, D. S.; Danishefsky, S. J. J. Org. Chem. 2005, 70, 10619–
10637. (o) Ferna´ndez-Mateos, A.; Silvo, A. I. R.; Gonza´lez, R. R.; Simmonds,
M. S. J. Tetrahedron 2006, 62, 7809–7816. (p) Li, C.-C.; Wang, C.-H.; Liang,
B.; Zang, X.-H.; Deng, L.-J.; Liang, S.; Chen, J.-H.; Wu, Y.-D.; Yang, Z. J.
Org. Chem. 2006, 71, 6892–6897. (q) Chavan, S. P.; Thakkar, M.; Jogdand,
G. F.; Kalkote, U. R. J. Org. Chem. 2006, 71, 8986–8988. (r) Shimizu, N.;
Mizaguchi, A.; Murakami, K.; Noge, K.; Mori, N.; Nishida, R.; Kuwahara, Y.
J. Pestic. Sci. 2006, 31, 311–315. (s) Tanimoto, H.; Kato, T.; Chida, N.
Tetrahedron Lett. 2007, 48, 6267–6270.
Practical and highly efficient methods for oxidative rear-
rangement of tertiary allylic alcohols to ꢀ-substituted R,ꢀ-
unsaturated carbonyl compounds employing oxoammonium
salts are described. The methods developed are applicable
to acyclic substrates as well as medium membered ring
substrates and macrocyclic substrates. The counteranion of
the oxoammonium salt plays crucial roles on this oxidative
rearrangement.
The oxidative rearrangement of tertiary allylic alcohols to
ꢀ-substituted R,ꢀ-unsaturated carbonyl compounds is one of the
useful transformations in synthetic chemistry.1 Since the report
in the mid-70s that PCC, PDC, and Collins reagent exert the
one-pot allylic transposition-oxidation of a variety of tertiary
allylic alcohols, oxochromium(VI)-based reagents have been the
first-choice reagents and have played indispensable roles in
organic synthesis (Scheme 1 ).1–3 However, the ever-growing
demand for the development of green sustainable methodologies
has urged us to alternatives to hazardous oxochromium(VI)-
based reagents.4 On the basis of the speculation that the CrdO
motif plays a role in the rearrangement step, we took interest
in the potential use of organic oxoammonium ions
(R1R2N+dO),5 which are active species for the nitroxyl-radical
{e.g., TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)6 and AZA-
DOs (2-azaadamantane N-oxyl)7 }-catalyzed oxidation of al-
cohols in promoting this particular oxidative transformation. We
now report a novel oxoammonium-salt-based method that
(4) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6,
4303–4306.
(5) (a) Kagiya, T.; Kumuro, C.; Sakano, K.; Nishimoto, S. Chem. Lett. 1983,
365–368. (b) Miyazawa, T.; Endo, T.; Shiihashi, S.; Okawara, M. J. Org. Chem.
1985, 50, 1332–1334. (c) Bobbitt, J. M.; Flores, M. C. L. Heterocycles 1988,
27, 509–533. (d) Liu, Y.-C.; Liu, Z.-L.; Wu, L.-M.; Chen, P. Tetrahedron Lett.
1985, 26, 4201–4202. (e) Miyazawa, T.; Endo, T. J. Org. Chem. 1985, 50, 3930–
3931. (f) Bobbitt, J. M.; Guttermuth, M. C. F.; Ma, Z.; Tang, H. Heterocycles
1990, 30, 1131–1140. (g) Ma, Z.; Bobbitt, J. M. J. Org. Chem. 1991, 56, 6110–
6114. (h) Ren, T.; Liu, Y.-C.; Guo, Q.-X. Bull. Chem. Soc. Jpn. 1996, 69, 2935–
2941. (i) Bobbitt, J. M. J. Org. Chem. 1998, 63, 9367–9374. (j) Takata, T.;
Tsujino, Y.; Nakanishi, S.; Nakamura, K.; Yoshida, E.; Endo, T. Chem. Lett.
1999, 937–938. (k) Kernag, C. A.; Bobbitt, J. M.; McGrath, D. V. Tetrahedron
Lett. 1999, 40, 1635–1636. (l) Merbouh, N.; Bobbitt, J. M.; Bru¨ckner, C. J.
Org. Chem. 2004, 69, 5116–5119. (m) Zakrzewski, J.; Grodner, J.; Bobbitt, J. M.;
Karpin´ska, M. Synthesis 2007, 2491–2494.
(6) (a) de Nooy, A. E.; Besemer, A. C.; van Bekkum, H. Synthesis 1996,
1153–1174. (b) Sheldon, R. A.; Arends, I. W. C. E. Adv. Synth. Catal. 2004,
346, 1051–1071.
(7) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc.
2006, 128, 8412–8413.
(1) (a) Babler, J. H.; Coghlan, M. J. Synth. Commun. 1976, 6, 469–474. (b)
Dauben, W. G.; Michno, D. M. J. Org. Chem. 1977, 42, 682–685. (c)
Sundararaman, P.; Herz, W. J. Org. Chem. 1977, 42, 813–819.
(8) (a) Golubev, V. A.; Rozantsev, E. G.; Neiman, M. B. Bull. Acad. Sci.
U.S.S.R., Chem. Sci. 1965, 11, 1898–1904. (b) Zhdanov, R. I.; Golubev, V. A.;
Rozantsev, E. G. Bull. Acad. Sci. U.S.S.R., Chem. Ser 1970, 19, 186–187. (c)
(2) For a recent review on an oxochromium(VI)-based oxidant, see: (a)
Luzzio, F. A. Org. React. 1998, 53, 1–221. (b) Wietzerbin, K.; Bernadou, J.;
Meunier, B. Eur. J. Inorg. Chem. 2000, 1391–1406.
´
Golubev, V. A.; Zhdanov, R. I.; Rozantsev, E. G. Bull. Acad. Sci. U.S.S.R.,
Chem. Se.r 1970, 19, 188–190.
4750 J. Org. Chem. 2008, 73, 4750–4752
10.1021/jo800634r CCC: $40.75 2008 American Chemical Society
Published on Web 05/24/2008