ORGANIC
LETTERS
2008
Vol. 10, No. 12
2593-2596
Total Synthesis of Sanguiin H-5
Xianbin Su, David S. Surry, Richard J. Spandl, and David R. Spring*
Department of Chemistry, UniVersity of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
Received April 25, 2008
ABSTRACT
Using an atropdiastereoselective oxidative biaryl coupling as the key step, the total synthesis of the ellagitannin natural product sanguiin H-5
is reported. Both organomagnesium and organozinc based metalation methodologies were used to efficiently construct the strained medium-
ring core of the natural product.
Sanguiin H-5 is a member of the ellagitannin class of
hydrolyzable plant polyphenols.1 In addition to industrial
applications,2 ellagitannins display a range of useful biologi-
cal properties including antiviral3 and antitumor activities.4
The structural features of sanguiin H-5 make it a challenging
molecular target.5 In addition to the ꢀ-glycosidic link at the
anomeric center, the characteristic hexahydrodiphenoyl
(HHDP) moiety1c common to all ellagitannins is part of a
strained medium ring with an (S)-configuration about the
biaryl bond (Scheme 1).
generated the desired (S)-atropoisomer of the HHDP group,
the complete reaction pathway suffered from somewhat
moderate yields, illustrating the complexity of the target
molecule. Since there are only a few reports of the efficient
synthesis of biaryl-containing medium rings, we sought to
exploit our organocuprate oxidation protocols7 to forge the
key biaryl bond of sanguiin H-5. These coupling methodolo-
gies utilized the following general sequence: halogen-metal
exchange (either iodine-magnesium7a or bromine-zinc;7b
copper salt mediated transmetalation; and finally, organo-
cuprate oxidation and biaryl bond formation.
We envisaged a strategy whereby the globally protected
sanguiin H-5 precursor 1 could be accessed in an atropdi-
astereoselective intramolecular biaryl coupling from the
appropriate diaryl halide 2 or 3 (Scheme 1).
The precursors 2 and 3 could potentially be synthesized
by the diacylation of the diol 4 with the gallic acid derivatives
5 or 6. Provided the pyransose 4 could be synthesized with
a ꢀ-configuration at the anomeric center and that the
halogenation of 7 is possible, compounds 7, 8, and 9 should
serve as readily available starting materials (Scheme 1).
The only previous synthesis of sanguiin H-5 was reported
by Feldman and Sambandam and involved an elegant
oxidative coupling of pendant aryl groups attached to a
central pyranose scaffold.6 Although the key coupling step
(1) (a) Tanaka, T.; Nonaka, G. I.; Nishioka, I. J. Chem. Res. Synop.
1985, 176. (b) Khanbabaee, K.; van Ree, T. Nat. Prod. Rep. 2001, 18, 641–
649. (c) Quideau, S.; Feldman, K. S. Chem. ReV. 1996, 96, 475–503, and
references therein.
(2) (a) Hemingway, R. W.; Laks, P. E. Basic Life Science. Plant
Polyphenols, Synthesis, Properties, Significance; Plenum Press: New York,
1992. (b) Haslam, E. Plant Polyphenols. Vegetable Tannins reVisited;
Cambridge University Press: Cambridge, 1989.
(3) (a) Nakashima, H.; Murakami, T.; Yamamoto, N.; Sakagami, H.;
Tanuma, S.; Hatano, T.; Yoshida, T.; Okuda, T. AntiViral Res. 1992, 18,
91–103. (b) Xie, L.; Xie, J. X.; Kashiwada, Y.; Cosentino, L. M.; Liu, S. H.;
Pai, R. B.; Cheng, Y. C.; Lee, K. H. J. Med. Chem. 1995, 38, 3003–3008.
(4) (a) Kashiwada, Y.; Nonaka, G.; Nishioka, I.; Chang, J. J.; Lee, K. H.
J. Nat. Prod. 1992, 55, 1033–1043. (b) Kashiwada, Y.; Nonaka, G.;
Nishioka, I.; Lee, K. J. H.; Bori, I.; Fukushima, Y.; Bastow, K. F.; Lee,
K. H. J. Pharm. Sci. 1993, 82, 487–492.
(6) Feldman, K. S.; Sambandam, A. J. Org. Chem. 1995, 60, 8171–
8178.
(7) (a) Surry, D. S.; Su, X.; Fox, D. J.; Franckevicius, V.; Macdonald,
S. J. F.; Spring, D. R. Angew. Chem., Int. Ed 2005, 44, 1870–1873. (b) Su,
X.; Fox, D. J.; Blackwell, D. T.; Tanaka, T.; Spring, D. R. Chem. Commun.
2006, 3883–3885. (c) Surry, D. S.; Fox, D. J.; Macdonald, S. J. F.; Spring,
D. R. Chem. Commun. 2005, 2589–2590.
(5) Khanbabaee, K.; van Ree, T. Synthesis 2001, 1585–1610.
10.1021/ol8009545 CCC: $40.75
Published on Web 05/28/2008
2008 American Chemical Society