Notes and references
1 (a) For selected reviews, see: R. C. Evans, P. Douglas and C. J. Winscom,
Coord. Chem. Rev., 2006, 250, 2093–2126; (b) M. A. Baldo, M. E.
Thompson and S. R. Forrest, Pure Appl. Chem., 1999, 71, 2095–2106;
(c) I. Sanchez-Barragan, J. M. Costa-Fernandez, A. Sanz-Medel, M.
Valledor and J. C. Campo, Trends Anal. Chem., 2006, 25, 958–967; (d) J.
Kuijt, F. Ariese, Udo, A. Th. Brinkman and C. Gooijer, Anal. Chim.
Acta, 2003, 488, 135–171.
2 (a) For selected reviews, see: K. N. Solovyov and E. A. Borisevich,
Physics-Uspekhi, 2005, 48, 231–253; (b) M. A. Omary, A. A. Mohamed,
M. A. Rawashdeh-Omary, Manal and J. P. Fackler, Coord. Chem. Rev.,
2005, 249, 1372–1381.
3 (a) B.-C. Tzeng, D. Li, S.-M. Peng and C.-M. Che, J. Chem. Soc.,
Dalton Trans., 1993, 2365–2371; (b) X. Hong, K.-K. Cheung, C.-X.
Guo and C.-M. Che, J. Chem. Soc., Dalton Trans., 1994, 1867–1871;
(c) C.-M. Che, H.-Y. Chao, V. M. Miskowski, Y. Li and K.-K. Cheung,
J. Am. Chem. Soc., 2001, 123, 4985–4991; (d) H . - Y. C h a o, W. L u , Y. L i ,
M. C. W. Chan, C.-M. Che, K.-K. Cheung and N. Zhu, J. Am. Chem.
Soc., 2002, 124, 14696–14706; (e) M. A. Omary, M. A. Rawashdeh-
Omary, H. V. K. Diyabalanage and H. V. Rasika Dias, Inorg. Chem.,
2003, 42, 8612–8614; (f) D. V. Partyka, M. Zeller, A. D. Hunter and
T. G. Gray, Angew. Chem., Int. Ed., 2006, 45, 8188–8191.
4 (a) S. Hamai, J. Am. Chem. Soc., 1989, 111, 3954–3957; (b) M. R.
Haneline, M. Tsunoda and F. P. Gabbai, J. Am. Chem. Soc., 2002,
124, 3737–3742; (c) M. A. Omary, R. M. Kassab, M. R. Haneline,
O. Elbjeirami and F. P. Gabbai, Inorg. Chem., 2003, 42, 2176–2178;
(d) C. N. Burress, M. I. Bodine, O. Elbjeirami, J. H. Reibenspies, M. A.
Omary and F. P. Gabbai, Inorg. Chem., 2007, 46, 1388–1395.
5 (a) M. Osawa, M. Hoshino, M. Akita and T. Wada, Inorg. Chem., 2005,
44, 1157–1159; (b) M. Osawa, M. Hoshino, T. Wada, Y. Araki and O.
Ito, Chem. Phys. Lett., 2006, 427, 338–342; (c) M. Osawa, M. Hoshino
and D. Hashizume, Chem. Phys. Lett., 2007, 436, 89–93.
6 (a) Complexes 1 and 2 are known: A. N. Nesmeyanov, E. G. Perevalova,
O. G. Afanasova, M. V. Tolstaya and K. I. Granberg, Izv. Akad.
Nauk. SSSR, Ser. Khim., 1978, 5, 1118–1122; (b) R. Uson, A. Laguna
and P. Brun, J. Organomet. Chem., 1979, 182, 449–454; (c) R. Uson,
A. Laguna and P. Brun, J. Organomet. Chem., 1980, 197, 369–
373.
7 (a) W. M. Melhuish, J. Phys. Chem., 1961, 65, 229–235; (b) D. F. Eaton,
Pure Appl. Chem., 1988, 60, 1107–1114.
8 M. Hoshino, H. Sonoki, Y. Miyazaki, Y. Iimura and K. Yamamoto,
Inorg. Chem., 2000, 39, 4850–4857.
9 N. Me´zailles, L. Ricard and F. Gagosz, Org. Lett., 2005, 19, 4133–4136.
10 T. Higashi, Program for absorption correction, Rigaku Corp.Tokyo,
Japan, 1995.
11 M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano,
L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, SIR2004, 2005.
12 K. A. Porter, A. Schier and H. Schmidbaur, in Perspectives in
Organometallic Chemistry, Special Publication No. 287, ed. B. R. Steele
and C. G. Screttas, The Royal Society of Chemistry, Cambridge, 2003,
pp. 74–85.
13 (a) R. G. Vranka and E. L. Amma, J. Am. Chem. Soc., 1967, 89, 3121–
3126; (b) J. F. Malone and V. S. McDonald, J. Chem. Soc., Dalton
Trans., 1970, 2646–2648.
Fig. 5 Electronic absorption and emission spectra of 1 (full) and 2 (blue)
in degassed CH2Cl2 at 298 K (kex = 266 nm). Intensities of emission spectra
were adjusted arbitrarily for clarity.
2-MeTHF (Table 3). The binuclear gold complex (2) shows yellow
green emission at 507, 541 nm, slightly red-shifted compared with
1 (Fig. 5). This red shift is probably caused by the substituent effect
of the second gold(I) phosphine unit. The green emission of 1 and
yellow green emission of 2 can be assigned to the phosphorescence
from the naphthalene moiety. Both complexes 1 and 2 are unstable
in CH2Cl2 solution. They gradually decomposed during the life
time measurement of phosphorescence.§
Conclusion
The two type complexes [2-naphthylAu(PPh3)] and [l-2-
naphthyl(AuPPh3)2]ClO4 (1, 2) have been synthesized and char-
acterized by X-ray crystallography. Two complexes show intrali-
gand phosphorescence from the naphthyl unit (3LE) at room-
temperature in both solutions and solid state. In the solid state,
the dinuclear complex 2 exhibits more intense phosphorescence
than the mononuclear complex 1, suggesting the triangle structure,
Cipso–Au1–Au2 can be regarded as an effective heavy atom
perturber for realizing room-temperature phosphorescence. In 2-
MeTHF solution, the mononuclear complex (1) shows intense
green room temperature phosphorescence (Up = 0.20 and sT
=
124 ls) from the locally excited triplet of the naphthalene moiety
(3LE). Since the complex 2 exists as an equilibrium mixture of
dinuclear and mononuclear structures in 2-MeTHF at 77 K,
it exhibits the mixed phosphorescence spectrum from the two
structures.
14 (a) S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini,
J. Chem. Soc., Chem. Commun., 1983, 1304–1306; (b) R. Uson, A.
Laguna, E. J. Fernandez, A. Mendia and P. G. Jones, J. Organomet.
Chem., 1988, 350, 129–138.
15 (a) E. Cerrada, M. Contel, A. D. Valencia, M. Laguna, T. Gelbrich
and M. B. Hursthouse, Angew. Chem., Int. Ed., 2000, 39, 2353–2356;
(b) E. J. Fernandez, A. langna, J. M. Lopez-de-Luzuriaga, M. Montiel,
M. E. Olmos, J. Perez and R. C. Puelles, Organometalics, 2006, 25,
4307–4315.
16 N. C. Payne, R. Ravindranath, G. Schoettel, J. J. Vittal and R. J.
Puddephatt, Inorg. Chem., 1991, 30, 4048–4053.
17 (a) For selected reviews, see: V. W.-W. Yam and K. K.-W. Lo, Chem.
Soc. Rev., 1999, 28, 323–334; (b) A. L. Balch, in Structure & Bonding
vol. 123, ed. V. W.-W. Yam, Springer, Berlin - Heidelberg, 2007, pp.
1–40.
Acknowledgements
We thank Dr Akira Tsuboyama (Canon Inc.) for his help with
absolute quantum yield determinations in solid state.
§ Complex 1 decomposes to naphthalene and Au(PPh3)Cl via the ho-
molytic cleavage of the Au–C bond under irradiation in CH2Cl2.5c Since
this photo reaction occurs even under the aerobic condition, we consider
that the excited singlet state is responsible for this dissociation reaction. The
quantum yield of this dissociation reaction is 0.03. Though the complex 2
decomposes with purple deposits in CH2Cl2 in short period, the decompo-
sition is more slowly in 2-MeTHF. With decomposition, phosphorescence
intensity decreases and fluorescence intensity of naphthalens (at 310–
400 nm) increases.
18 J. C. Miller, J. S. Meek and S. J. Strickler, J. Am. Chem. Soc., 1977, 99,
8175–8179.
2252 | Dalton Trans., 2008, 2248–2252
This journal is
The Royal Society of Chemistry 2008
©