Scheme 1
.
Magnesiation of 2-Bromopyrimidine (2) at Positions
Scheme 2. Negishi and Sonogashira Cross-Coupling Reactions
at Position 2 Leading to Fully Substituted Pyrimidines 7a-c
4, 6, and 5 using TMPMgCl·LiCl (1; 1.1 equiv)
pyrimidines 6a-f in 67-92% yield (entries 9-14). The
bromine attached at position 2 can be readily substituted
using a Negishi6 or a Sonogashira7 reaction giving the
2-substituted pyrimidines 7a-c in 85-91% yield (Scheme
2).
This method is of great utility for the preparation of
pharmaceutically active heterocycles such as pyrazolopy-
rimidines.11 Thus, the treatment of tetrasubstituted pyri-
midine 6d with NH2NH2·H2O in THF (rt, 10 min) leads
to the pyrazolopyrimidine 8 in 70% yield (Scheme 3). As
stituted 2-bromopyrimidines. Thus, the 2-bromo-4-(meth-
ylthio)pyrimidine8 4a is converted within 5 min at 20 °C to
the 6-magnesiated species, which is chlorinated by reaction
with FCl2CCF2Cl9 leading to the chloropyrimidine 5a in 76%
yield (entry 1 of Table 1). Reaction with BrCl2CCCl2Br
furnishes the bromo-pyrimidine 5b in 81% yield (entry 2).
An iodolysis using I2 leads to the 2-bromo-4-iodopyrimidine
derivative 5c in 78% yield (entry 3). Similarly, the 4-arylated-
2-bromopyrimidine 4f is magnesiated quantitatively with
TMPMgCl·LiCl (1; 1.1 equiv, -40 °C, 45 min) and reacted
with FCl2CCF2Cl, TMSCN, or MeSO2SMe affording the
expected 4,6-disubstituted 2-bromopyrimidines 5d-f in
72-91% yield (entries 4-6).
Scheme 3. Application to the Synthesis of Pyrazolopyrimidines
and Synthesis of a p38 Kinase Inhibitor (11)
Other 2-bromopyrimidines substituted at position 4 with
an alkynyl group or an iodine (4c, 4h) are magnesiated
under mild conditions. Quenching with typical electro-
philes furnishes the polyfunctional pyrimidines 5g and 5h
in 84-93% yield (entries 7 and 8). The last position
(position 5) can be magnesiated as well between -5 and
20 °C within 20-30 min with TMPMgCl·LiCl (1; 1.1
equiv). Trapping with iodine, PhCOCl (after transmeta-
lation with CuCN·2LiCl10 (1.1 equiv)), allyl bromide,
PhCHO, or MeSO2SMe provides the fully substituted
an application, we have prepared a p38 kinase inhibitor12
(useful as an anti-inflammatory and antiviral agent)
starting from 4,6-dichloro- 2-(methylthio)pyrimidine13 (9).
(6) (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc.
1980, 102, 3298. (b) Negishi, E.; Kobayashi, M. J. Org. Chem. 1980, 45,
5223. (c) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (d) Milne, J. E.;
Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028.
(10) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
(11) (a) Gomtsyan, A.; Didomenico, S.; Lee, C.; Stewart, A. O.;
Bhagwat, S. S.; Kowaluk, E. A.; Jarvis, M. F. Bioorg. Med. Chem. Lett.
2004, 14, 4165. (b) Revesz, L.; Blum, E.; Di Padova, F. E.; Buhl, T.; Feifel,
R.; Gram, H.; Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg.
Med. Chem. Lett. 2006, 16, 262.
(7) (a) Benderitter, P.; de Araujo, J. X., Jr.; Schmitt, M.; Bourguignon,
J. J. Tetrahedron 2007, 63, 12465. (b) Kim, J. T.; Gevorgyan, V. Org.
Lett. 2002, 4, 4697. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N.
Tetrahedron Lett. 1975, 50, 4467. (d) Sonogashira, K. ComprehensiVe
Organic Synthesis; Pergamon Press: New York, 1991; Vol. 3.
(8) The thiomethyl group can serve as a leaving group in cross-coupling
reactions: Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979.
(9) Marzi, E.; Bobbio, C.; Cottet, F.; Schlosser, M. Eur. J. Org. Chem.
2005, 10, 2116.
(12) (a) Dewdney, N. J.; Gabriel, T.; McCaleb, K. L. WO 2007023115,
2007. (b) Arora, N.; Billedeau, R. J.; Dewdney, N. J.; Gabriel, T.; Goldstein,
D. M.; O’Yang, C.; Soth, M.; Trejo-Martin, T. A. WO 2007023105, 2007.
(c) Arora, N.; Billedeau, R. J.; Dewdney, N. J.; Gabriel, T.; Goldstein, D. M.;
O’Yang, C.; Soth, M. U.S. 2005197340, 2005.
(13) 4,6-Dichloro-2-(methylthio)pyrimidine is commercially available.
2498
Org. Lett., Vol. 10, No. 12, 2008