Communication
[1]
[2]
a) J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852; b) J. F. Hartwig, Angew.
Chem. Int. Ed. 1998, 37, 2046; Angew. Chem. 1998, 110, 2154; c) S. V. Ley,
A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400; Angew. Chem. 2003,
115, 5558; d) E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola,
Chem. Rev. 2007, 107, 5318; e) F. Monnier, M. Taillefer, Angew. Chem. Int.
Ed. 2009, 48, 6954; Angew. Chem. 2009, 121, 7088.
a) C. P. Baird, C. M. Rayner, J. Chem. Soc. Perkin Trans. 1 1998, 1973; b) J.
Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002,
102, 1359; c) I. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004,
248, 2337; d) J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651; e) J. F.
Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046; Angew. Chem. 1998, 110,
2154; f) J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem.
Res. 1998, 31, 805; g) H. Liu, X. Jiang, Chem. Asian J. 2013, 8, 2546; h)
C.-F. Lee, Y.-C. Liu, S. S. Badsara, Chem. Asian J. 2014, 9, 706; i) P.-F. Wang,
X.-Q. Wang, J.-J. Dai, Y.-S. Feng, H.-J. Xu, Org. Lett. 2014, 16, 4586; j) A. M.
Thomas, S. Asha, K. S. Sindhu, G. Anilkumar, Tetrahedron Lett. 2015, 56,
6560; k) O. S. Lee, H. K. Lee, H. Kim, H. Shin, J.-H. Sohn, Tetrahedron 2015,
71, 2936.
Scheme 3. Reaction of a 1,2-diaryl disulfide with (4-methoxyphenyl)boronic
acid.
Conclusions
A simple and efficient protocol for the synthesis of a library
of azole sulfides from easily available organoboronic acids and
thiazolidine-2-thiones under mild, nonbasic conditions without
an ancillary ligand and within short reaction times was estab-
lished.
[3]
a) S. I. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, K. Kondo, J. Org.
Chem. 1979, 44, 2408; b) H. J. Cristau, B. Chabaud, R. Labaudiniere, H.
Christol, J. Org. Chem. 1986, 51, 875; c) A. Carpita, R. Rossi, B. Scamuzzi,
Tetrahedron Lett. 1989, 30, 2699; d) H. Kuniyasu, A. Ogawa, K. I. Sato, I.
Ryu, N. Kambe, N. Sonoda, J. Am. Chem. Soc. 1992, 114, 5902; e) J. E.
Backvall, A. Ericsson, J. Org. Chem. 1994, 59, 5850; f) U. Koelle, C. Riet-
mann, J. Tjoe, T. Wagner, U. Englert, Organometallics 1995, 14, 703; g) A.
Ogawa, T. Ikeda, K. Kimura, T. Hirao, J. Am. Chem. Soc. 1999, 121, 5108;
h) E. Stephan, A. Olaru, G. Jaouen, Tetrahedron Lett. 1999, 40, 8571; i) K.
Sugoh, H. Kuniyasu, T. Sugae, A. Ohtaka, Y. Takai, A. Fanaka, C. Machino,
N. Kambe, H. Kurosawa, J. Am. Chem. Soc. 2001, 123, 5108; j) C. G. Bates,
P. Saejueng, M. Q. Doherty, D. Venkataraman, Org. Lett. 2004, 6, 5005; k)
V. Aucagne, A. Tatibouet, P. Rollin, Tetrahedron 2004, 60, 1817.
a) J. Dumas, D. Brittelli, J. Chen, B. Dixon, H. Hatoum-Mokdad, G. Konig,
R. Sibley, J. Witowsky, S. Wong, Bioorg. Med. Chem. Lett. 1999, 9, 2531;
b) J. Koci, V. Klimesova, K. Waisser, J. Kaustova, H.-M. Dahse, U. Moell-
mann, Bioorg. Med. Chem. Lett. 2002, 12, 3275; c) R. Paramashivappa, P. P.
Kumar, S. P. V. Rao, A. S. Rao, Bioorg. Med. Chem. Lett. 2003, 13, 657; d)
A. Naya, K. Kobayashi, M. Ishikawa, K. Ohwaki, T. Saeki, K. Noguchi, N.
Ohtake, Chem. Pharm. Bull. 2003, 51, 697; e) H. Wei, G.-F. Yang, Bioorg.
Med. Chem. 2006, 14, 8280; f) L. Zhang, J. Fan, K. Vu, K. Hong, J.-Y.
Le Brazidec, J. Shi, M. Biamonte, D. J. Busch, R. E. Lough, R. Grecko, Y.
Ran, J. L. Sensintaffar, A. Kamal, K. Lundgren, F. J. Burrows, R. Mansfield,
G. A. Timony, E. H. Ulm, S. R. Kasibhatla, M. F. Boehm, J. Med. Chem.
2006, 49, 5352; g) B. Pejin, C. Iodice, G. Tommonaro, S. D. Rosa, J. Nat.
Prod. 2008, 71, 1850.
Experimental Section
General Remarks: 1H NMR and 13C NMR spectra were recorded
with a 300 MHz spectrometer in CDCl3 by using tetramethylsilane
as an internal standard. Chemical shifts are reported in parts per
million (δ), coupling constants (J values) are reported in Hertz (Hz),
and spin multiplicities are indicated by the following symbols: s
(singlet), d (doublet), t (triplet), p (pentet), m (multiplet). 13C NMR
spectra were routinely run with broadband decoupling. Aluminum
plates precoated with silica gel (Merck) were used for TLC analysis
with a mixture of petroleum ether (60–80 °C) and ethyl acetate as
the eluent. Elemental analyses were performed with a Perkin–Elmer
2400 Series II Elemental CHNS analyzer. Mass spectra were recorded
with a LCQ Fleet spectrometer, Thermo Fisher Instruments Ltd., USA.
Electrospray ionization mass spectrometry (ESI-MS) analysis was
performed in the positive ion and negative ion modes with a liquid
chromatography ion trap.
[4]
Typical Procedure for the Synthesis of Fused Azole Sulfides 3:
R–B(OH)2 2 (0.15 mmol) and Cu(acac)2 (0.02 mmol, 20 mol-%) were
added to a stirred solution of thiazolidine-2-thione 1 (0.10 mmol)
in DCE (5 mL), and the mixture was heated at 80 °C for 0.5 h in
open air. Completion of the reaction was monitored by TLC. After
cooling to room temperature, the mixture was filtered through Cel-
ite. Then, the filtrate was washed with a saturated solution of NH4Cl
(3 × 10 mL) and extracted with ethyl acetate (2 × 20 mL). The com-
bined organic layer was dried with anhydrous Na2SO4 and concen-
trated in vacuo. The residue was then purified by column chroma-
tography on silica gel (hexanes/ethyl acetate, 4.5:0.5) to yield azole
sulfide 3.
[5]
[6]
a) L. S. Liebeskind, J. Srogl, Org. Lett. 2002, 4, 979; b) A. Sorg, R. Brückner,
Synlett 2005, 289; c) B. Vaz, R. Alvarez, J. A. Souto, A. R. de Lera, Synlett
2005, 294.
a) K. Morimoto, K. Tsuji, T. Iio, N. Miyata, A. Uchida, R. Osawa, H. Kitsutaka,
A. Takahashi, Carcinogenesis 1991, 12, 703; b) E. Marcantoni, M. Massac-
cesi, M. Petrini, G. Bartoli, M. C. Bellucci, M. Bosco, L. Sambri, J. Org. Chem.
2000, 65, 4553; c) M. Ceruti, G. Balliano, F. Rocco, P. Milla, S. Arpicco, L.
Cattel, F. Viola, Lipids 2001, 36, 629; d) P. Johannesson, G. Lindeberg, A.
Johanson, G. V. Nikiforovich, A. Gogoll, B. Synnergren, M. Le Greves, F.
Nyberg, A. Karlen, A. Hallberg, J. Med. Chem. 2002, 45, 1767; e) H. S.
Sader, D. M. Johnson, R. N. Jones, Antimicrob. Agents Chemother. 2004,
48, 53.
[7]
[8]
a) J.-R. Wu, C.-H. Lin, C.-F. Lee, Chem. Commun. 2009, 4450; b) W.-Y. Wu,
J.-C. Wang, F.-Y. Tsai, Green Chem. 2009, 11, 326.
Acknowledgments
The authors thank the Department of Science and Technology
(DST), New Delhi for funds under the IRHPA program towards
a high-resolution NMR spectrometer to Madurai Kamaraj Uni-
versity. J. S. greatly acknowledges Mr. Ramalingachandrasekar
and the management of Thiagarajar College of Engineering,
Madurai, for instrumental facility.
a) G. Y. Li, G. Zheng, A. F. Noonan, J. Org. Chem. 2001, 66, 8677; b) M.
Murata, S. L. Buchwald, Tetrahedron 2004, 60, 7397; c) T. Itoh, T. Mase,
Org. Lett. 2004, 6, 4587; d) M. A. Fernández-Rodríguez, Q.-L. Shen, J. F.
Hartwig, Chem. Eur. J. 2006, 12, 7782; e) M. A. Fernández-Rodríguez, Q.-
L. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 2180; f) C. C. Eichman,
J. P. Stambuli, J. Org. Chem. 2009, 74, 4005; g) V. Guilarte, M. A. Fernán-
dez-Rodríguez, P. García-García, E. Hernando, R. Sanz, Org. Lett. 2011, 13,
5100.
[9]
a) C. G. Bates, R. K. Gujadhur, D. Venkataraman, Org. Lett. 2002, 4, 2803;
b) N. Taniguchi, T. Onami, J. Org. Chem. 2004, 69, 915; c) S. Kumar, L.
Engman, J. Org. Chem. 2006, 71, 5400; d) Y.-J. Chen, H.-H. Chen, Org. Lett.
2006, 8, 5609; e) B. C. Ranu, A. Saha, R. Jana, Adv. Synth. Catal. 2007,
Keywords: Synthetic methods · Cross coupling · Copper ·
Sulfur heterocycles · Nitrogen heterocycles · Boronic acids
Eur. J. Org. Chem. 2016, 1963–1967
1966
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim