4
Tetrahedron
3. (a) Christinat N, Scopelliti R, Severin K. Angew Chem Int Ed.
of 8 remained unreacted, whereas most of 4b was converted to
2008;47:1848–1852;
7 (Figure 4). The integral values indicate that the ratio of 7, 9,
and 10 was 85/5/10. The reaction under reflux conditions for 30
min led to similar results (7/9/10 = 91/0/9) (Figure S4). Even
when twice the amount of 8 was used, that is, 1 equivalent of 4b
and 2 equivalents of 8 were reacted with 0.5 equivalents of 6
(initial concentrations: [4b]0 = 0.2 M, [8]0 = 0.4 M, [6]0 = 0.1 M)
at room temperature for 30 min, the ratio of 9 and 10 did not
increase (7/9/10 = 90/2/8) (Figure S5). These results indicate that
the formation of 7 was preferred over that of 9 and 10 kinetically
or thermodynamically. To compare the thermodynamic stability
of the oxazaborine ring with that of the dioxaborole ring, the
reaction of 9 with 2 equivalents of 4b was carried out in THF at
(b) Niu W, Smith MD, Lavigne JJ. J Am Chem Soc. 2006;128:16466–
16467;
(c) Niu W, O’Sullivan C, Rambo BM, Smith MD, Lavigne JJ. Chem
Commun. 2005;4342–4344;
(d) Icli B, Sheepwash E, Riis-Johannessen T, Schenk K, Filinchuk Y,
Scopelliti R, Severin K. Chem Sci. 2011;2:1719–1721;
(e) Christinat N, Scopelliti R, Severin K. Chem Commun. 2008;3660–
3662;
(f) Christinat N, Scopelliti R, Severin K. Chem Commun. 2004;1158–
1159;
(g) Christinat N, Scopelliti R, Severin K. J Org Chem. 2007;72:2192–
2200;
(h) Christinat N, Croisier E, Scopelliti R, Cascella M, Röthlisberger U,
Severin K. Eur J Inorg Chem. 2007;5177–5181.
1
room temperature for 30 min. The H NMR spectrum of the
4. (a) Liu X-H, Guan C-Z, Wang D, Wan L-J. Adv Mater. 2014;26:6912–
6920;
(b) Clair S, Abel M, Porte L. Chem Commun. 2014;50:9627–9635.
5. (a) Zhang J, Tanaka J, Gurnani P, Wilson P, Hartlieb M, Perrier S. Polym
Chem. 2017;8:4079–4087;
crude product revealed that the ratio of 7, 9, and 10 was 83/2/15,
that is, most of 9 was converted to 7 by the reaction with 4b
(Figure S6). This result clearly shows that the formation of the
oxazaborine
ring
involved
in
7
was
preferable
(b) Cash JJ, Kubo T, Bapat AP, Sumerlin BS. Macromolecules.
2015;48:2098–2106;
thermodynamically to that of the dioxaborole ring of 9.
In summary, the present study demonstrated the synthesis of
benzoxazaborine derivatives by dehydration condensation of 4
with 2. The oxazaborine compounds 5b and 7 were reasonably
stable to hydrolysis and could be isolated by silica gel column
chromatography. The single crystal X-ray structural analysis of 7
revealed that the lengths of the B–N and B–O bonds are in
agreement with those of conjugated B–N bonds and B(sp2)–O
single bonds, respectively, and that the oxazaborine ring of 7
exhibits high planarity. Furthermore, because the λmax of the UV-
vis spectrum of 7 in chloroform was found at a longer
wavelength (by 15 nm) than that of 4b, the two benzene units of
7 are thought to be conjugated via the B–N bonds of the
oxazaborine rings. Further research into the synthesis of
polymers containing benzoxazaborine units is currently
underway.
(c) Sugnaux C, Klok H-A. Macromol Rapid Commun. 2014;35:1402–
1407;
(d) Brooks WLA, Sumerlin BS. Chem Rev. 2016;116:1375–1397;
(e) Roberts MC, Mahalingam A, Hanson MC, Kiser PF. Macromolecules.
2008;41:8832–8840.
6. (a) Campbell PG, Marwitz AJV, Liu S-Y. Angew Chem Int Ed.
2012;51:6074–6092;
(b) Baranac-Stojanovic M. Chem Eur J. 2014;20:16558–16565;
(c) Lamm AN, Liu S-Y. Mol BioSyst. 2009;5:1303–1305;
(d) Kar T, Elmore DE, Scheiner S. J Mol Struct. 1997;391:65–74;
(e) Yourdkhani S, Chojecki M, Hapka M, Korona T. J Phys Chem A.
2016;120:6287–6302.
7. (a) Josefík F, Svobodová M, Bertolasi V, Šimůnek P, Macháček V,
Almonasy N, Černošková E. J Organomet Chem. 2012;699:75–81;
(b) Svobodová M, Bárta J, Šimůnek P, Bertolasi V, Macháček V. J
Organomet Chem. 2009;694:63–71;
(c) Kotali A, Maniadaki A, Kotali E, Harris PA, R ycka-Sokołowska E,
Bałczewski P, Joule JA. Tetrahedron Lett. 2017;58:512–515;
(d) Josefík F, Mikysek T, Svobodavá M, Šimůnek P, Kvapilová H,
Ludvík J. Organometallics. 2014;33:4931–4939;
(e) Mikysek T, Kvapilová H, Doušová H, Josefík F, Šimůnek P,
Růžičková Z, Ludvík J. Inorg Chim Acta. 2017;455:465–472.
8. Kaupp G, Naimi-Jamal MR, Stepanenko V. Chem Eur J. 2003;9:4156–
4160.
Acknowledgements
This work was supported by a JGC-Scholarship Foundation
and a JSPS KAKENHI Grant Number JP18K05221. A part of
this work was also supported by the Cooperative Research
Program of "Network Joint Research Center for Materials and
Devices".
9. Davies GHM, Mukhtar A, Saeednia B, Sherafat F, Kelly CB, Molander
GA. J Org Chem. 2017;82:5380–5390.
10. (a) Lanni LM, Tilford RW, Bharathy M, Lavigne JJ. J Am Chem Soc.
2011;133:13975–13983;
(b) Du Y, Mao K, Kamakoti P, Ravikovitch P, Paur C, Cundy S, Li Q,
Calabro D. Chem Commun. 2012;48:4606–4608;
(c) Du Y, Mao K, Kamakoti P, Wooler B, Cundy S, Li Q, Ravikovitch P,
Calabro D. J Mater Chem A. 2013;1:13171−13178;
(d) Smith BJ, Hwang N, Chavez AD, Novotney JL, Dichtel WR, Chem
Commun. 2015;51:7532–7535.
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at doi:
11. Abbey ER, Zakharov LN, Liu S-Y. J Am Chem Soc. 2008;130:7250–7252.
12. Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nature Chem.
2017;9:571–577.
References and notes
1. (a) Kubo Y, Nishiyabu R, James TD. Chem Commun. 2015;51:2005–2020;
(b) Dogru M, Bein T. Chem Commun. 2014;50:5531–5546;
(c) Nishiyabu R, Kubo Y, James TD, Fossey JS. Chem Commun.
2011;47:1124–1150;
13. (a) Rettig SJ, Trotter J. Can J Chem. 1997;55:3071–3075;
(b) Arcus VL, Main L, Nicholson BK.
J Organomet Chem.
1993;460:139–147;
(c) Zhdankin VV, Persichini III PJ, Zhang L, Fix S, Kiprof P.
Tetrahedron Lett. 1999;40:6705–6708;
(d) Severin K. Dalton Trans. 2009;5254–5264.
2. (a) Goldberg AR, Northrop BH. J Org Chem. 2016;81:969–980;
(b) Smith MK, Northrop BH. Chem Mater. 2014;26:3781–3795;
(c) Bull SD, Davidson MG, van den Elsen JMH, Fossey JS, Jenkins ATA,
Jiang Y-B, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc Chem
Res. 2013;46:312–326;
(d)Balkwill JE, Cole SC, Coles MP, Hitchcock PB. Inorg Chem.
2002;41:3548–3552;
(e)Hall, DG. Boronic Acids: Preparation and Applications in Organic
Synthesis Medicine and Materials. Weinheim:Wiley-VCH;2011.
(d) Fujita N, Shinkai S, James TD. Chem Asian J. 2008;3:1076–1091.