4536
A. Basak, M. Kar / Bioorg. Med. Chem. 16 (2008) 4532–4537
103, 4091; (d) Mayer, J.; Sondheimer, F. J. Am. Chem.
Soc. 1966, 88, 602.
2. (a) Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed.
1991, 30, 1387; (b) Schreiner, P. R. J. Am. Chem. Soc.
1998, 120, 4184.
3. (a) Magnus, P.; Parry, D.; Iliadis, T.; Eisenbeis, S. A.;
Fairhurst, R. A. Chem. Commun. 1994, 1543; (b) Magnus,
P.; Fortt, S.; Pitterna, T.; Snyder, J. P. J. Am. Chem. Soc.
1990, 112, 4986.
4. Nicolaou, K. C.; Zuccarello, G.; Oogawa, Y.; Schweiger,
E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 10, 4866.
5. Basak, A.; Khamrai, U. K.; Shain, J. C. Tetrahedron Lett.
1997, 38, 6067.
white precipitate appeared. The solid material was iso-
lated by washing with diethyl ether several times; Yield:
100%, white solid, mp 235 °C (decomposed); mmax (neat):
3464, 2979, 2924, 2786, 2629, 2524, 1461, 1213, 1154, 1030
and 1006; dH (DMSO-d6) 9.39 (br s, 2H), 7.50–7.39 (m,
6H), 7.09 (d, J = 8 Hz, 2H), 4.20 (s, 2H), 3.46 (t,
J = 5.1 Hz, 2H), 2.82 (t, J = 5.1 Hz, 2H), 2.27 (s, 3H);
dC(DMSO-d6) 145.5, 137.8, 129.2, 128.5, 128.1, 128.0,
127.8, 126.9,125.5, 98.2, 90.3, 88.1, 83.8, 48.7, 39.5 (ob-
scured by DMSO), 20.8, 18.7; Mass (ES+) m/z 182.11
(MH+), 153.08 (M+ÀCH2@NH); HRMS calcd for
C13H12N: 182.0971; found: 182.0977.
6. Basak, A.; Shain, J. C.; Khamrai, U. K.; Rudra, K.;
Basak, A. J. Chem. Soc. Perkin Trans. 1 2000, 1955.
7. The effect is most pronounced at the ortho position (ortho
effect). For reference see (a) Pickard, F. C.; Shepherd, R.
L.; Gillis, A. E.; Dunn, M. E.; Feldgus, S.; Kirschner, K.
N.; Shields, G. C.; Manoharan, M.; Alabugin, I. V.
J. Phys. Chem. A 2006, 110, 2517; (b) Zeidan, T. A.;
Kovalenko, S. V.; Manoharan, M.; Alabugin, I. V. J. Org.
Chem. 2006, 71, 962.
2.4. Spectral data of cycloaromatized products
For 6a: dH (DMSO-d6) 8.5–8.2 (9H, m), 4.58 (2H, m),
3.56 (2H, m), 3.10 (2H, m); Mass 413 (M+).
For 6b: dH (DMSO-d6) 8.6–8.2 (8H, m), 4.60 (2H, m),
3.58 (2H, m), 3.14 (2H, m); Mass 458 (M+).
8. Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1991, 113,
1907.
9. (a) Chen, P.; Hoffner, J.; Schottelius, M. J.; Feichtinger,
D. J. Am. Chem. Soc. 1998, 120, 376; (b) Logan, C. F.;
Chen, P. J. Am. Chem. Soc. 1996, 118, 2113.
For 8c: dH (DMSO-d6) 8.95 (1H, br s), 7.35 (8H, m),
7.05 (2H, d, J = 8.0 Hz), 4.40 (2H, m), 3.40 (2H, ob-
scured), 3.12 (2H, m), 2.14 (3H, s); Mass 184 (MH+).
10. Basak, A.; Bdour, H. M.; Shain, J. C. J. Ind. Chem. Soc.
1999, 76, 679.
2.5. Differential calorimetric studies
11. (a) Singh, R.; Just, G. J. Org. Chem. 1989, 54, 4453; (b)
Zeidan, T. A.; Kovalenko, S. V.; Manoharan, M.;
Alabugin, I. V. J. Org. Chem. 2006, 71, 962.
DSC measurements were recorded in Perkin-Elmer Jade
instrument (Jade DSC). The rate of heating was fixed at
10 °C/min. Heating was carried out in an atmosphere of
nitrogen (99.49% purity) in aluminum crucibles. Cali-
bration was done with indium.
12. (a) Sonogashira, K.; Tohoda, Y.; Hagihara, N. Tetrahe-
dron Lett. 1975, 16, 4467; (b) Takahashi, S.; Kuroyama,
Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.
13. (a) Roper, S.; Franz, M. H.; Wartchow, R.; Hoffman, H.
M. R. Org. Lett. 2003, 5, 2773; (b) von Riesen, C.;
Hoffman, H. M. R. Chem. Eur. J. 1996, 2, 680.
14. Taylor, E. C.; Macor, J. E.; Pont, J. L. Tetrahedron 1987,
43, 5145.
15. (a) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I.
Tetrahedron Lett. 1989, 30, 4995; (b) Myers, A. G.; Kuo,
E. Y.; Finnney, N. S. J. Am. Chem. Soc. 1989, 111, 8057;
(c) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc.
1989, 111, 9130; (d) Nagata, R.; Yamanaka, H.; Murah-
ashi, E.; Saito, I. Tetrahedron Lett. 1990, 31, 2907.
16. Du, Y.; Creighton, C. J.; Yan, Z.; Gauthier, D. A.; Dahl,
J. P.; Zhao, B.; Belkowski, S. M.; Reitz, A. B. Bioorg.
Med. Chem. 2005, 13, 5936.
17. (a) Mitsunobu, O. Synthesis 1981, 1; (b) Wada, M.;
Mitsunobu, O. Tetrahedron Lett. 1972, 1279; (c) Town-
send, C. A.; Nguyen, L. T. Tetrahedron Lett. 1983, 23,
4859; (d) Salituro, G. M.; Townsend, C. A. J. Am. Chem.
Soc. 1990, 112, 760; Intramolecular Mitsunobu reaction
has been previously used to make prolinol sulfonamides
(e) Swayze, E. E. Tetrahedron Lett. 1997, 38, 8643.
18. Konig, B.; Schofield, E.; Bubenitschek, P.; Jones, P. G.
J. Org. Chem. 1994, 59, 7142.
19. (a) Fukuyama, T.; Cheung, M.; Jow, C.-Y.; Hidai, Y.;
Kan, T. Tetrahedron Lett. 1997, 38, 5831; (b) Basak, A.;
Mandal, S.; Das, A. K.; Bertolasi, V. Bioorg. Med. Chem.
Lett. 2002, 12, 873; (c) Basak, A.; Mandal, S. Tetrahedron
Lett. 2002, 43, 4241.
2.6. DNA-cleavage experiment
Sample solution (5 ll) in acetonitrile was mixed with the
DNA solution (7 ll) in TAE (Tris–Acetate–EDTA) buf-
fer (pH 8.0) and was incubated at 37 °C for 12–48 h.
The solution was then mixed with aqueous sucrose
(40%, 20 ll)) and bromophenol blue (0.25%, 5 ll). From
the above mixture, 15 ll was loaded on 0.7% agarose gel
and was subjected to electrophoresis in a horizontal slab
gel apparatus in TAE buffer for 1 h under 75 V. After elec-
trophoresis, the bands were visualized under UV-transil-
luminator and photographed using GELDOC. The
cleavage efficiency was measured by densitometry using
image processing software (Kodak 1D version V.3.6.3).
Acknowledgments
M.K. is grateful to CSIR for the fellowship and A.B.
thanks, DST for a research grant. Dr. Subrata Mandal
is thanked for carrying out some initial studies. DST is
also thanked for creation of 400 MHz facility under
IRPHA programme.
20. Although 5a is more reactive than 5c in the protonated
form, the lower basicity of the former may be responsible in
generating less number of cleavage events. This might
explain the DNA-cleavage result observed with the amines.
21. Considering the pKa of the cyclic amine 5c to be ꢀ8.6
(assumed to be close to N-ethyl N-propargyl amine), it has
References and notes
1. (a) Jones, R. G.; Bergman, R. G. J. Am. Chem. Soc. 1972,
9, 660; (b) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25; (c)
Lockhart, T. P.; Bergman, R. G. J. Am. Chem. Soc. 1981,