6228
B.-Y. Shiu et al. / Tetrahedron 64 (2008) 6221–6229
2. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Littke, A. F.; Fu, G. C.
Angew. Chem., Int. Ed. 2002, 41, 4176; (c) Espinet, P.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2004, 43, 4704.
3. (a) Goossen, L. J.; Koley, D.; Hermann, H.; Thiel, W. Organometallics 2005, 24,
2398; (b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685; (c) Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S.
Organometallics 2005, 24, 2319; (d) Barder, T. E. J. Am. Chem. Soc. 2006, 128,
898.
toluene (1 mL) and 2-bromothiophene (0.11 mL, 1.00 mmol). The
solution was stirred at 40 ꢁC for 3 h. Subsequently, excess amount of
water was added and the product was extracted with ether
(3ꢂ20 mL). The combined organic extracts were dried over anhy-
drous MgSO4 and concentrated under vacuum. The crude residue
was purified by flash chromatography on silica gel.
4. Metal-Catalyzed Cross-coupling Reactions; Diederich, F., Stang, P. J., Eds.;
Wiley-VCH: Weinheim, Germany, 1998.
5. (a) Casado, A. L.; Espinet, P. Organometallics 1998, 17, 954; (b) Barrios-Landeros,
F.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 6944; (c) Gillie, A.; Stille, J. K. J. Am.
Chem. Soc. 1980, 102, 4933.
6. (a) Sundermann, A.; Uzan, O.; Martin, J. M. L. Chem.dEur. J. 2001, 7, 1703; (b)
Ananikov, V. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 2002, 124, 2839;
(c) Senn, H. M.; Ziegler, T. Organometallics 2004, 23, 2980; (d) Zuidema, E.; van
Leeuwen, P. W. N. M.; Bo, C. Organometallics 2005, 24, 3703.
7. (a) Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985; (b) Nishihara,
Y.; Onodera, H.; Osakada, K. Chem. Commun. 2004, 192.
8. (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (b) Andersen, N. G.; Keay,
B. A. Chem. Rev. 2001, 101, 997; (c) Bessel, C. A.; Aggarwal, P.; Marschilok, A. C.;
Takeuchi, K. J. Chem. Rev. 2001, 101, 1031; (d) Walker, S. D.; Barder, T. E.;
Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871; (e) Hawtig,
J. F. Angew. Chem., Int. Ed. 1998, 37, 2046; (f) Mann, G.; Hartwig, J. F. J. Am. Chem.
Soc. 1996, 118, 13109; (g) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F.
J. Org. Chem. 2002, 67, 5553; (h) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc.
2000, 122, 4020; (i) Planas, J. G.; Gladysz, J. A. Inorg. Chem. 2002, 41, 6947; (j)
Hu, Q.-S.; Lu, Y.; Tang, Z.-Y.; Yu, H.-B. J. Am. Chem. Soc. 2003, 125, 2856; (k)
Pickett, T. E.; Roca, F. X.; Richards, C. J. J. Org. Chem. 2003, 68, 2592; (l) Tang,
Z.-Y.; Lu, Y.; Hu, Q.-S. Org. Lett. 2003, 5, 297.
4.5. X-ray crystallographic studies
Suitable crystals of 4b, 4cp, 4cmO, 4d, 4dO, and 5cm were
sealed in thin-walled glass capillaries under nitrogen atmosphere
and mounted on a Bruker AXS SMART 1000 diffractometer. In-
tensity data were collected in 1350 frames with increasing
u (width
of 0.3ꢁ per frame). The absorption correction was based on the
symmetry equivalent reflections using SADABS program. The space
group determination was based on a check of the Laue symmetry
and systematic absences, and was confirmed using the structure
solution. The structure was solved by direct methods using
a SHELXTL package.24 All non-H atoms were located from succes-
sive Fourier maps and hydrogen atoms were refined using a riding
model. Anisotropic thermal parameters were used for all non-H
atoms and fixed isotropic parameters were used for H atoms.25
Crystallographic data for compounds 4b, 4cp, 4cmO, 4d, 4dO, and
5cm are summarized in Table 1.
9. For general reviews, see: (a) Delacroix, O.; Gladysz, J. A. Chem. Commun. 2003,
665; (b) Salzer, A. Coord. Chem. Rev. 2003, 242, 59.
10. (a) Jesen, J. F.; Johannsen, M. Org. Lett. 2003, 5, 3025; (b) See Refs. 8g,h,k,l.
11. (a) Hong, F.-E.; Chang, Y.-C.; Chang, R.-E.; Chen, S.-C.; Ko, B.-T. Organometallics
2002, 21, 961; (b) Chang, Y.-C.; Hong, F.-E. Organometallics 2005, 24, 5686.
12. (a) Hong, F.-E.; Ho, Y.-J.; Chang, Y.-C.; Huang, Y.-L. J. Organomet. Chem. 2005,
690, 1249; (b) Chang, C.-P.; Huang, Y.-L.; Hong, F.-E. Tetrahedron 2005, 61, 3835;
(c) Hong, F.-E.; Chang, Y.-C.; Chang, C.-P.; Huang, Y.-L. Dalton Trans. 2004, 157;
(d) Hong, F.-E.; Ho, Y.-J.; Chang, Y.-C.; Lai, Y.-C. Tetrahedron 2004, 60, 2639; (e)
Hong, F.-E.; Chang, C.-P.; Chang, Y.-C. Dalton Trans. 2003, 3892; (f) Hong, F.-E.;
Lai, Y.-C.; Ho, Y.-J.; Chang, Y.-C. J. Organomet. Chem. 2003, 688, 161; (g) Lee, J.-C.;
Wang, M.-G.; Hong, F.-E. Eur. J. Inorg. Chem. 2005, 5011.
5. Computational methods
All calculations were carried out using the Gaussian 03 package,
in which the tight criterion (10ꢀ8 hartree) is the default for the SCF
convergence.26 The molecular geometries were fully optimized
with the hybrid B3LYP-DFT method under C1 symmetry, in which
the Becke three parameter exchange functional27 and the
Lee–Yang–Parr correlation functional28 were used. The LANL2DZ
13. Buchwald, S. L.; Zim, D. Org. Lett. 2003, 5, 2413.
14. O’Connor, T. J.; Patel, H. A. Can. J. Chem. 1971, 49, 2706.
including the double-z basis sets for the valence and outermost
15. Gan, Y.-H.; Lee, J.-C.; Hong, F.-E. Polyhedron 2006, 25, 3555.
16. Bedford, R. B.; Hazelwood, S. L.; Horton, P. N.; Hursthouse, M. B. Dalton Trans.
2003, 4164.
17. (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71; (b) Chatt, J.; Duncanson, L. A.
J. Chem. Soc. 1953, 2939.
18. (a) Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda,
H. T.; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H. J. Am. Chem. Soc. 2005, 127,
6744; (b) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc.
2005, 127, 9298.
19. Yin, J.; Rainka, M. P.; Zhang, X. X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
1162.
core orbitals combined with pseudo-potential was used for Pd,29,30
and 6-31G(d) basis sets for the other atoms. All the stationary
points found were characterized via harmonic vibrational fre-
quency analysis as minima (number of imaginary frequency
Nimag¼0). Natural Population Analysis (NPA)31 was performed with
NBO 5.0 software32 using B3LYP/LANL2DZ as the level. Stability
analysis33 has been performed to determine if the Kohn–Sham (KS)
solutions are stable with respect to variations, which break spin
and spatial symmetries.
20. Bedford, R. B.; Cazin, C. S. Chem. Commun. 2001, 1540.
21. (a) Stambuli, J. P.; Bu¨hl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346; (b)
Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541; (c) Stambuli, J. P.; Stauffer,
S. R.; Shaughnessy, K. H.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 2677; (d)
Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295; (e) Aranoys, A.; Old, D. W.;
Kiyomory, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 4369.
22. (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107,
972; (b) Grasa, G. A.; Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077; (c)
Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.
23. (a) Pople, J. A. Angew. Chem., Int. Ed. 1999, 38, 1894; (b) Hehre, W. J.; Radom, L.;
Schleyer, P. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience:
New York, NY, 1986; (c) Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density
Functional Theory; Wiley-VCH: Weinheim, 2000; (d) Ziegler, T. Chem. Rev. 1991,
91, 651; (e) Davidson, E. R. Chem. Rev. 2002, 100, 351.
6. Supplementary material
Crystallographic data for the structural analysis have been
deposited at the Cambridge Crystallographic Data Center, CCDC
nos. 653734, 653735, 666136, 653736, 653737, and 666137 for
compound 4b, 4cp, 4cmO, 4d, 4dO, and 5cm, respectively. Copies of
this information may be obtained free of charge from the Director,
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: þ44 1223
24. Sheldrick, G. M. SHELXTL PLUS User’s Manual. Revision 4.1; Nicolet XRD
Corporation: Madison, Wisconsin, USA, 1991.
25. The hydrogen atoms were ride on carbons or oxygens in their idealized
positions and held fixed with the C–H distances of 0.96 Å.
Acknowledgements
26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox,
We thank the National Science Council of the R.O.C. (Grant NSC
95-2113-M-005-015-MY3) for financial support.
References and notes
1. (a) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359; (b) Applied Homogeneous Catalysis with Organometallic Compounds;
Cornils, B., Herrmann, W. A., Eds.; VCH: New York, NY, 1996; Vols. 1 and 2; (c)
Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; John Wiley and Sons:
New York, NY, 1992; Chapter 8.