Page 9 of 10
Catalysis Science & Technology
DOI: 10.1039/C4CY01505C
ca. 1600 to 1200 m2.gꢀ1 when 25% Cu2+ relative to Zn2+ was used.
13 N. Liédana, A. Galve, C. Rubio and J. Coronas, ACS Appl.
Mater. Interfaces, 2012, 4, 5016ꢀ5021.
Importantly, Cu/ZIFꢀ8 particles were proven to be efficient and
reusable catalysts for the [3+2] cycloaddition of organic azides
with alkynes and for Friedländer and Combes condensations. The
Cu5%/ZIFꢀ8 crystals showed high catalytic activity in the
synthesis of quinolines using 2ꢀaminobenzophenone as starting
material. 1,4ꢀDisubstituted triazoles were obtained with excellent
yields and good regioselectivity using the Cu25%/ZIFꢀ8 material.
These results combined with the high stability and the ease of
65
70
14 K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. D. Huang, F. J.
UribeꢀRomo, H. K. Chae, M. O’Keeffe and O. M. Yaghi,
Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 10186ꢀ10191.
15 X. C. Huang, Y. Y. Lin, J. P. Zhang and X. M. Chen, Angew.
Chem. Int. Ed., 2006, 45, 1557ꢀ1559.
16 B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe and O. M.
Yaghi, Nature, 2008, 453, 207ꢀ211.
17 R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M.
O’Keeffe and O. M. Yaghi, Science, 2008, 319, 939ꢀ943.
18 H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 2007,
129, 5314ꢀ5315.
5
10 regeneration of ZIFꢀ8 particles may serve as a starting point to
develop new nanomaterials based on metal organic frameworks
with high adsorbent properties and enhanced catalytic properties.
75
19 A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi and R.
Schneider, CrystEngComm, 2014, 16, 4493ꢀ4500.
20 H. ꢀL. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai and Q.
Xu, J. Am. Chem. Soc., 2009, 131, 11302ꢀ11303.
80
21 D. Esken, H. Noei, Y. Wang, C. Wiktor, S. Turner, G. Van
Tendeloo and R. A. Fischer, J. Mater. Chem., 2011, 21, 5907ꢀ
5915.
15 Acknowledgements
22 D. Esken, S. Turner, C. Wiktor, S. B. Kalidindi, G. Van
Tendeloo and R. A. Fischer, J. Am. Chem. Soc., 2011, 133,
16370ꢀ16373.
23 G. Lu, S. Li, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X.
Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X.
Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp and
F. Huo, Nat. Chem., 2012, 4, 310ꢀ316.
24 Z. Li and H. C. Zeng, Chem. Mater., 2013, 25, 1761ꢀ1768.
25 L. Chen, Y. Peng, H. Wang, Z. Gu and C. Duan, Chem.
Commun., 2014, 50, 8651ꢀ8654.
26 F. Wang, Z. ꢀS. Liu, H. Yang, Y. ꢀX. Tan and J. Zhang,
Angew. Chem. Int. Ed., 2011, 50, 450ꢀ453.
27 I. Luz, F. X. Llabrés i Xamena and A. Corma, J. Catal., 2010,
276, 134ꢀ140.
28 I. Luz, F. X. Llabrés i Xamena and A. Corma, J. Catal., 2012,
285, 285ꢀ291.
29 Y. Wu, L. ꢀG. Qiu, W. Wang, Z. ꢀQ. Li, T. Xu, Z. ꢀY. Wu and
X. Jiang, Transition Met. Chem., 2009, 34, 263ꢀ268.
30 A. Dhakshinamoorthy, M. Alvaro and H. Garcia, J. Catal.,
2009, 267, 1ꢀ4.
31 N. Masciocchi, S. Bruni, E. Cariati, F. Cariati, S. Galli and A.
Sironi, Inorg. Chem., 2001, 40, 5897ꢀ5905.
32 J. Fan, L. Gan, H. Kawaguchi, W. ꢀY. Sun, K. ꢀB. Yu and W. ꢀ
X. Tang, Chem. Eur. J., 2003, 9, 3965ꢀ3973.
33 J. Fan, W. ꢀY. Sun, T. ꢀa. Okamura, W. ꢀX. Tang and N.
Ueyama, Inorg. Chem., 2003, 42, 3168ꢀ3175.
34 W. Zhao, J. Fan, T. ꢀa. Okamura, W. ꢀY. Sun and N. Ueyama,
New J. Chem., 2004, 28, 1142ꢀ1150.
35 L. ꢀF. Ma, Q. ꢀL. Meng, L. ꢀY. Wang and F. ꢀP. Liang, Inorg.
Chim. Acta, 2010, 363, 4127ꢀ4133.
36 H. ꢀj. Pang, H. ꢀy. Ma, J. Peng, C. ꢀj. Zhang, P. ꢀp. Zhang and
Z. ꢀm. Su, CrystEngComm, 2011, 13, 7079ꢀ7085.
37 Y. Zhu, W. ꢀy. Wang, M. ꢀw. Guo, G. Li and H. ꢀj. Lu, Inorg.
Chem. Commun., 2011, 14, 1432ꢀ1435.
38 J. Xu, X. ꢀQ. Yao, L. ꢀF. Huang, Y. Z. Li and H. ꢀG. Zheng,
CrystEngComm, 2011, 13, 857ꢀ865.
39 H. Fu, Y. Li, Y. Lu, W. Chen, Q. Wu, J. Meng, X. Wang, Z.
Zhang and E. Wang, Cryst. Growth Des., 2011, 11, 458ꢀ465.
40 S. ꢀS. Chen, M. Chen, S. Takamizawa, M. ꢀS. Chen, Z. Su and
W. ꢀY. Sun, Chem. Commun., 2011, 47, 752ꢀ754.
41 A. Béziau, S. A. Baudron, D. Pogozhev, A. Fluck and M. W.
Hosseini, Chem. Commun., 2012, 48, 10313ꢀ10315.
42 L. Wen, J. Zhao, K. Lv, Y. Wu, K. Deng, X. Leng and D. Li,
Cryst. Growth Des., 2012, 12, 1603ꢀ1612.
This work was supported by ICCEL and MICA Carnot Institutes.
We thank Hervé Marmier (LIEC, UMR CNRS 7360, Université
de Lorraine) for ICPꢀOES measurements.
85
Notes and references
20 a Laboratoire Réaction et Génie des Procédés (LRGP), UMR CNRS 7274,
Université de Lorraine, 1 rue Grandville 54001 Nancy, France. Tel: +33
3 83 17 50 53; E-mail: raphael.schneider@univ-lorraine.fr
b Clermont Université, Université Blaise Pascal, Institut de Chimie de
Clermont-Ferrand, 24 Avenue des Landais, BP 80026, 63174, Aubière,
25 France.
90
95
c Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361,
CNRS, 15 rue Jean Starcky, 68093 Mulhouse, France
d Institut Jean Lamour (IJL), Université de Lorraine, CNRS, UMR 7198,
CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
30
100
105
110
115
120
125
130
† Electronic Supplementary Information (ESI) available: Size
distributions of Cu/ZIFꢀ8 crystals and XRD patterns of crystals after
chemical treatment. See DOI: 10.1039/b000000x/
35
40
45
50
55
60
1
2
3
J. S. Sco, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Leon and
K. Kim, Nature, 2000, 404, 982ꢀ986.
H. Hayshi, A. P. Cote, H. Furukawa, M. O. O’Keeffe and O.
M. Yaghi, Nat. Mater., 2007, 6, 501ꢀ506.
P. K. Thallapally, J. Tian, M. R. Kishan, C. A. Fernandez, S.J.
Dalgarho, P.B. Mc Grail, J. E. Warren and J. L. Atwood, J.
Am. Chem. Soc., 2008, 130, 16842ꢀ16843.
4
5
6
7
8
D. Britt, D. Tranchemontagne and O. M. Yaghi, Proc. Natl.
Acad. Sci. U.S.A., 2008, 105, 11623ꢀ11627.
D. Britt, H. Furukawa, B. Wang, G. Glover and O. M. Yaghi,
Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 20637ꢀ20640.
J. ꢀR. Li, R. J. Kuppler and H. ꢀC. Zhou, Chem. Soc. Rev.,
2009, 38, 1477ꢀ1504.
Z. H. Xiang, D. P. Cao, J. H. Lan, W. C. Wang and D. P.
Broom, Energy Environ. Sci., 2010, 3, 1469ꢀ1487.
S. Benmansour, C. Atmani, S. Setifi, S. Triki, M. Marchivie
and C. GomezꢀGarcia, J. Coord. Chem. Rev., 2010, 254, 1468ꢀ
1478.
9
R. Morris and P. Wheatley, Angew. Chem. Int. Ed., 2008, 47,
4966ꢀ4981.
10 O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B.
G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J.
T. Hupp, Nat. Chem., 2010, 2, 944ꢀ948.
11 B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E.
B. Lobkovsky, O. M. Yaghi and S. A. Dai, Angew. Chem. Int.
Ed., 2006, 45, 1390ꢀ1393.
43 H. ꢀY. Lin, B. Mu, X. ꢀL. Wang and A. ꢀX. Tian, J.
Organomet. Chem., 2012, 702, 36ꢀ44.
44 D. ꢀD. Zhou, C. ꢀT. He, P. ꢀQ. Liao, W. Xue, W. ꢀX. Zhang,
H. ꢀL. Zhou, J. ꢀP. Zhang, and X. ꢀM. Chen, Chem. Commun.,
2013, 49, 11728ꢀ11730.
12 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen
and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450ꢀ1459.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 9