Page 7 of 9
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
(b) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chemistry of
Acyl Radicals. Chem. Rev. 1999, 99, 1991-2070.
on the statistical probability of the cross-coupling of the two different
radical intermediates, the desired coupling adduct was obtained in low
yield (17%). Moreover, the protecting group pattern in the resulting
product made a further elaboration into 1 difficult. Masuda, K.; Naga-
tomo, M.; Inoue, M. Direct Assembly of Multiply Oxygenated Carbon
Chains by Decarbonylative Radical–Radical Coupling Reactions. Nat.
Chem. 2017, 9, 207-212.
(10) (a) Ikemoto, N.; Schreiber, S. L. Total Synthesis of the Anthel-
mintic Agent Hikizimycin. J. Am. Chem. Soc. 1990, 112, 9657-9659.
(b) Ikemoto, N.; Schreiber, S. L. Total synthesis of (-)-Hikizimycin
Employing the Strategy of Two-Directional Chain Synthesis. J. Am.
Chem. Soc. 1992, 114, 2524-2536.
(11) (a) Urabe, D.; Asaba, T.; Inoue, M. Convergent Strategies in
Total Syntheses of Complex Terpenoids. Chem. Rev. 2015, 115, 9207-
9231. (b) Allred, T. K.; Manoni, F.; Harran, P. G. Exploring the Bound-
aries of “Practical”: De Novo Syntheses of Complex Natural Product-
Based Drug Candidates. Chem. Rev. 2017, 117, 11994-12051.
(12) Inoue, M. Evolution of Radical-Based Convergent Strategies
for Total Syntheses of Densely Oxygenated Natural Products. Acc.
Chem. Res. 2017, 50, 460-464.
(13) For recent reviews on radical reactions in natural product syn-
thesis, see: (a) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals:
Reactive Intermediates with Translational Potential. J. Am. Chem. Soc.
2016, 138, 12692-12714. (b) Pitre, S. P.; Weires, N. A.; Overman, L.
E. Forging C(sp3)−C(sp3) Bonds with Carbon-Centered Radicals in the
Synthesis of Complex Molecules. J. Am. Chem. Soc. 2019, 141, 2800-
2813. (c) Tomanik, M.; Hsu, I. T.; Herzon, S. B. Fragment Coupling
Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Car-
banionic or Free Radical Intermediates. Angew. Chem. Int. Ed. DOI:
10.1002/anie.201913645.
(21) Several groups reported related radical addition reactions using
simple substrates. Intramolecular reaction: (a) Devin, P.; Fensterbank
L.; Malacria, M. Tin-Free Radical Chemistry: Intramolecular Addition
of Alkyl Radicals to Aldehydes and Ketones. Tetrahedron Lett. 1999,
40, 5511-5514. Addition of THF radical: (b) Yoshimitsu, T.; Tsunoda,
M.; Nagaoka, H. New Method for the Synthesis of α-Substituted Tet-
rahydrofuran-2-Methanols through Diastereoselective Addition of
THF to Aldehydes Mediated by Et3B in the Presence of Air. Chem.
Commun. 1999, 1745-1746. (c) Yoshimitsu, T.; Arano, Y.; Nagaoka, H.
Radical α-C−H Hydroxyalkylation of Ethers and Acetal. J. Org. Chem.
2005, 70, 2342-2345. Application of photoredox initiated hole cataly-
sis: (d) Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. Intermo-
lecular Radical Addition to Carbonyls Enabled by Visible Light Photo-
redox Initiated Hole Catalysis. J. Am. Chem. Soc. 2017, 139, 13652-
13655. Addition to ketoacids: (e) Xie, S.; Li, D.; Huang, H.; Zhang, F.;
Chen, Y. Intermolecular Radical Addition to Ketoacids Enabled by Bo-
ron Activation. J. Am. Chem. Soc. 2019, 141, 16237-16242.
(22) Roe, B. A.; Boojamra, C. G.; Griggs, J. L.; Bertozzi, C. R. Syn-
thesis of β-C-Glycosides of N-Acetylglucosamine via Keck Allylation
Directed by Neighboring Phthalimide Groups J. Org. Chem. 1996, 61,
6442-6445.
(23) (a) Nicolaou, K. C.; Mitchell, H. J. Adventures in Carbohydrate
Chemistry: New Synthetic Technologies, Chemical Synthesis, Molec-
ular Design, and Chemical Biology. Angew. Chem., Int. Ed. 2001, 40,
1576-1624. (b) Hanessian, S.; Giroux, S.; Merner, B. L. Design and
Strategy in Organic Synthesis. From the Chiron Approach to Catalysis.
Wiley-VCH, 2013.
(24) (a) Liu, J.-Y.; Jang, Y.-J.; Lin, W.-W.; Liu, J.-T.; Yao, C.-F.
Triethylaluminum- or Triethylborane-Induced Free Radical Reaction
of Alkyl Iodides and α,β-Unsaturated Compounds. J. Org. Chem. 2003,
68, 4030-4038. (b) Castle, S. L.; Li, F. Synthesis of the Acutumine Spi-
rocycle via a Radical−Polar Crossover Reaction. Org. Lett. 2007, 9,
4033-4036.
(25) (a) Yamada, K.; Yamamoto, Y.; Tomioka, K. Initiator-Depend-
ent Chemoselective Addition of THF Radical to Aldehyde and Al-
dimine and Its Application to a Three-Component Reaction. Org. Lett.
2003, 5, 1797-1799. (b) Akindele, T.; Yamada, K.; Tomioka, K. Dime-
thylzinc-Initiated Radical Reactions. Acc. Chem. Res. 2009, 42, 345-
355.
(26) Residual H2O functions as a reductant of a radical under these
conditions. Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros,
M. R.; Wood, J. L. Deoxygenation of Alcohols Employing Water as
the Hydrogen Atom Source. J. Am. Chem. Soc. 2005, 127, 12513-
12515.
(27) Dondoni, A.; Marra, A.; Merino, P. Installation of the Pyruvate
Unit in Glycidic Aldehydes via a Wittig Olefination-Michael Addition
Sequence Utilizing a Thiazole-Armed Carbonyl Ylide. A New Stere-
oselective Route to 3-Deoxy-2-Ulosonic Acids and the Total Synthesis
of DAH, KDN, and 4-epi-KDN. J. Am. Chem. Soc. 1994, 116, 3324-
3336.
(28) The C6-stereochmistry of 29-α was established by NMR exper-
iments, and the corresponding O-methylmandelate ester of the C6-al-
cohol was used for structural determination of 30-α. See Supporting
Information for details.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) Wang, A. P.; Liu, C.; Yang, S.; Zhao, Z. H.; Lei, P.S. An Effi-
cient Method to Synthesize Novel 5-O-(6’-Modified)-Mycaminose 14-
Membered Ketolides. Tetrahedron 2016, 72, 285-297.
(15) Yang, Y.; Yu, B. Recent Advances in the Chemical Synthesis
of C‑Glycosides. Chem. Rev. 2017, 117, 12281-12356.
(16) For selected examples of applications of glycosyl anions, see:
(a) Carpintero, M.; Nieto, I.; Fernández-Mayoralas, A. Stereospecific
Synthesis of α- and β-C-Glycosides from Glycosyl Sulfoxides: Scope
and Limitations. J. Org. Chem. 2001, 66, 1768-1774. (b) Miquel, N.;
Doisneau, G.; Beau, J. M. Reductive Samariation of Anomeric 2-
Pyridyl Sulfones with Catalytic Nickel: An Unexpected Improvement
in the Synthesis of 1,2-trans-Diequatorial C-Glycosyl Compounds. An-
gew. Chem. Int. Ed. 2000, 39, 4111-4114. (c) Mikkelsen, L. M.; Krintel,
S. L.; Jiménez-Barbero, J.; Skrydstrup, T. Application of the Anomeric
Samarium Route for the Convergent Synthesis of the C-Linked Trisac-
charide α-D-Man-(1→3)-[α-D-Man-(1→6)]-D-Man and the Disaccha-
rides α-D-Man-(1→3)-D-Man and α-D-Man-(1→6)-D-Man. J. Org.
Chem. 2002, 67, 6297-6308. For a review, see: (d) Somsák, L. Carban-
ionic Reactivity of the Anomeric Center in Carbohydrates. Chem. Rev.
2001, 101, 81-136.
(17) (a) Beckwith, A. L. J.; Hay, B. P. Kinetics of the Reversible β-
Scission of the Cyclopentyloxy Radical. J. Am. Chem. Soc. 1989, 111,
230-234. (b) Wilsey, S.; Dowd, P.; Houk, K. N. Effect of Alkyl Sub-
stituents and Ring Size on Alkoxy Radical Cleavage Reactions. J. Org.
Chem. 1999, 64, 8801-8811.
(18) (a) Nagatomo, M.; Kamimura, D.; Matsui, Y.; Masuda, K.; In-
oue, M. Et3B-Mediated Two- and Three-Component Coupling Reac-
tions via Radical Decarbonylation of α-Alkoxyacyl Tellurides: Single-
Step Construction of Densely Oxygenated Carboskeletons. Chem. Sci.
2015, 6, 2765-2769. (b) Matsumura, S.; Matsui, Y.; Nagatomo, M.; In-
oue, M. Stereoselective Construction of anti- and syn-1,2-Diol Struc-
tures via Decarbonylative Radical Coupling of α-Alkoxyacyl Tellu-
rides. Tetrahedron 2016, 72, 4859-4866. (c) Fujino, H.; Nagatomo, M.;
Paudel, A.; Panthee, S.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Uni-
fied Total Synthesis of Polyoxin J, L, and Their Fluorinated Analogues
Based on Decarbonylative Radical Coupling Reactions. Angew. Chem.
Int. Ed. 2017, 56, 11865-11869.
(19) For a review, see: Ollivier, C.; Renaud, P. Organoboranes as a
Source of Radicals. Chem. Rev. 2001, 101, 3415-3434.
(20) For reviews of decarbonylation rates, see: (a) Fischer, H.; Paul,
H. Rate Constants for Some Prototype Radical Reactions in Liquids by
Kinetic Electron Spin Resonance. Acc. Chem. Res. 1987, 20, 200-206.
(29) Compound 34-α was selectively synthesized because we found
that the C1α-stereochemistry was more beneficial for the radical addi-
tion than the C1β-counterpart in separate model experiments. These
experiments also revealed that the superiority of the N-phthaloyl group
to the N-trifluoroacetaamide or N-2,3-dimethylmaleimide at C4. See
the Supporting Information for details.
(30) Kovác, P.; Taylor, R. B.; Glaudemans, C. P. J. General Synthe-
sis of (1→3)-β-D-Galacto Oligosaccharides and Their Methyl β-Gly-
cosides by a Stepwise or a Blockwise Approach. J. Org. Chem. 1985,
50, 5323-5333.
(31) Withers, S. G.; Percival, M. D.; Street, I. P. The Synthesis and
Hydrolysis of a Series of Deoxy- and Deoxyfluoro-α-D-“glucopyra-
nosyl” phosphates. Carbohydr. Res. 1989, 187, 43-66.
(32 ) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. 2-
Azaadamantane N-Oxyl (AZADO) and 1-Me-AZADO: ꢀ Highly
7
ACS Paragon Plus Environment