Acknowledgement
The authors thank the Italian Ministry of the Education,
University and Research (PRIN 2001034479) and the Office of
Naval Research and the National Science Foundation,
Division of Materials Research, for partial support of this
work. The Cornell Center for Materials Research and the
Cornell High Energy Synchrotron Source (CHESS) are also
gratefully acknowledged for the use of their facilities.
References
1
2
G. Ajroldi, Chim. Ind. (Milan), 1997, 79, 484.
B. C. Auman, D. P. Higley, K. V. Scherer, Jr., E. F. McCord and
W. H. Shaw, Jr., Polymer, 1995, 36, 651.
Fig. 11 Advanced (filled symbols) and receded (open symbols) contact
angles (¡3u) of double-layer films with a top layer from block
copolymers poly1-block-poly5a ($) and poly1-block-poly6a (&) and a
bottom layer from SEBS, as a function of immersion time in water.
SEBS (,) films were used for comparison.
3
T. Maruno, K. Nakamura and N. Murata, Macromolecules, 1996,
29, 2006.
M. J. Owen and H. Kobayashi, Macromol. Symp., 1994, 82, 115.
D. R. Iyengar, S. M. Perutz, C. A. Dai, C. K. Ober and
E. J. Kramer, Macromolecules, 1996, 29, 1229.
4
5
6
7
8
J. Hopken and M. Mo¨ller, Macromolecules, 1992, 25, 1461.
M. Yamabe, Makromol. Chem., Macromol. Symp., 1992, 64, 11.
G. Koemehl, A. Fluthwedel and H. Schafer, Makromol. Chem.,
1992, 193, 157.
and poly1-block-poly6a, respectively (Fig. 11). These values
turned out to be somewhat smaller than those of the single-
layer films, but still acceptably high. Furthermore, they
remained quite stable upon prolonged (up to at least 25 days)
exposure to water. In contrast, SEBS films exhibited much
lower contact angles (90u advanced) for which hysteresis
became more appreciable after long exposures times (Fig. 11).
This indicated an enrichment of the surface of the coating with
the fluorinated block copolymers due to surface segregation
in the double-layer films. We explained the high contact
angles detected with the presence at room temperature of a
liquid-crystalline surface that favors stable, close packing of
the fluorinated tails at the film surface.
9
T. M. Chapman and K. G. Marra, Macromolecules, 1995, 28, 2081.
10 M. Miyamoto, H. Yamanaka, K. Aoi, Y. Sano and T. Saegusa,
Polym. J., 1995, 27, 461.
11 F. Ciardelli, M. Aglietto, L. Montagnini di Mirabello, E. Passaglia,
S. Giancristoforo, V. Castelvetro and G. Ruggeri, Prog. Org.
Coat., 1997, 32, 43.
12 (a) Fluoropolymers,ed. G. Hougham, Kluwer Academic/Plenum
Publishers, New York, 1999; (b) Fluoropolymer 2000, ed.
D. W. Smith, EPS Publ., Hattiesburg, 2000.
13 J. G. Wang and C. K. Ober, Macromolecules, 1997, 30, 7560.
14 S. Perutz, J. Wang, E. J. Kramer and C. K. Ober, Macromolecules,
1998, 31, 4272.
15 M. Xiang, X. Li, C. K. Ober, K. Char, J. Genzer, E. Sivaniah,
E. J. Kramer and D. A. Fisher, Macromolecules, 2000, 33, 6106.
16 J. Wang, G. Mao, C. K. Ober and E. J. Kramer, Macromolecules,
1997, 30, 1906.
17 G. Mao, J. Wang, S. R. Clingman, C. K. Ober, J. T. Chen and
E. L. Thomas, Macromolecules, 1997, 30, 2556.
Conclusions
18 M. K. Georges, R. P. N. Veregin, P. M. Kazmaier and
G. K. Hamer, Macromolecules, 1993, 26, 2987.
19 G. Moad and E. Rizzardo, Macromolecules, 1995, 28, 8722.
20 C. J. Hawker, G. G. Barclay, A. Orellana, J. Dao and
W. Davenport, Macromolecules, 1996, 29, 5245.
21 P. J. McLeod, R. P. N. Veregin, P. G. Odell and M. K. Georges,
Macromolecules, 1998, 31, 530.
22 B. Keoshkerian, M. K. Georges and D. Boils-Boissier, Macro-
molecules, 1995, 28, 6381.
23 E. Yoshida, J. Polym. Sci., Part A, Polym. Chem., 1996, 34, 2937.
24 P. M. Kazmaier, K. Daimon, M. K. Georges, G. K. Hamer and
R. P. N. Veregin, Macromolecules, 1997, 30, 2228.
25 P. Lacroix-Desmazes, T. Delair, C. Pichot and B. Boutevin,
J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 3845.
26 C. Burguiere, M.-A. Dourges, B. Charleux and J. P. Vairon,
Macromolecules, 1999, 32, 3883.
27 A. Fischer, A. Brembilla and P. Lochon, Macromolecules, 1999,
32, 6069.
28 P. G. Odell, R. P. N. Veregin, L. M. Michalak, D. Brousmiche and
M. K. Georges, Macromolecules, 1995, 28, 8453.
29 R. P. N. Veregin, P. G. Odell, L. M. Michalak and M. K. Georges,
Macromolecules, 1996, 29, 4161.
Following our strategy for engineering polymers as suitable
materials for hydrophobic non-stick coatings, we prepared two
classes of new fluorinated polystyrene-based block copolymers
with low polydispersity by controlled radical polymerization
and polymer modification. The TEMPO-mediated CRP turned
out to be a rather simple and straightforward preparation
method for block copolymers bearing fluorinated aromatic
side chains. On the contrary, the polymer modification scheme
involved a greater number of more complex synthetic steps, the
anionic polymerization for the preparation of the parent
copolymers to be modified was the initial stage.
The block copolymers containing a (CF2)8 tail in the side
chains showed a stronger tendency to form smectic mesophases
than the block copolymers bearing a (CF2)4 or a (CF2)6 tail.
This can be attributed to the interplay between the rod-like
nature of the fluorinated side chains and the phase separation
at the molecular level of the different incompatible aromatic-
fluoroaliphatic components of the polymer repeat unit.
Measurements on block copolymer films as a function of
immersion time in water evidenced rather high values of
contact angles that were quite constant. This suggests that the
fluorinated block copolymers form fluorine-enriched surfaces
that would be highly hydrophobic and quite resistant to
reconstruction.
30 O. Mitsunobu, Synthesis, 1981, 1.
31 H. C. Brown and J. C. Chen, J. Org. Chem., 1981, 46, 3978.
32 B. Gallot, G. Galli, A. Ceccanti and E. Chiellini, Polymer, 1999,
40, 2561.
33 T. Davidson, A. C. Griffin, L. M. Wilson and A. H. Windle,
Macromolecules, 1995, 28, 354.
1692
J. Mater. Chem., 2002, 12, 1684–1692