C.-C. Liu, D. Janmanchi, C.-C. Chen, H.-L. Wu
SHORT COMMUNICATION
[2]
For reviews, see: a) T. Hayashi, Synlett 2001, 879–887; b) N.
Miyaura in Organoboranes for Syntheses, ACS Symp. Ser. 783
(Eds.: P. V. Ramachandran, H. C. Brown), American Chemical
Society, Washington, DC, 2000, pp. 94–107; c) T. Hayashi, K.
Yamasaki, Chem. Rev. 2003, 103, 2829–2844; d) K. Fagnou,
M. Lautens, Chem. Rev. 2003, 103, 169–196.
For reviews, see: a) F. Glorius, Angew. Chem. 2004, 116, 3444–
3446; Angew. Chem. Int. Ed. 2004, 43, 3364–3366; b) C. Defi-
eber, H. Grützmacher, E. M. Carreira, Angew. Chem. 2008,
120, 4558–4579; Angew. Chem. Int. Ed. 2008, 47, 4482–4502;
c) R. Shintani, T. Hayashi, Aldrichim. Acta 2009, 42, 31–38.
For the pioneering report, see a) T. Hayashi, K. Ueyama, N.
Tokunaga, K. Yoshida, J. Am. Chem. Soc. 2003, 125, 11508–
11509; for the most recent report from the Hayashi group, see
b) R. Shitani, Y. Tsutsumi, M. Nagaosa, T. Nishimura, T. Hay-
ashi, J. Am. Chem. Soc. 2009, 131, 13588–13589; c) K. Okam-
oto, T. Hayashi, V. H. Rawal, Chem. Commun. 2009, 4815–
4817; d) T. Nishimura, J. Wang, M. Nagaosa, K. Okamoto, R.
Shintani, F.-Y. Kwong, W.-Y. Yu, A. S. C. Chan, T. Hayashi, J.
Am. Chem. Soc. 2010, 132, 464–465; e) T. Nishimura, T. Kawa-
moto, M. Nagaosa, H. Kumamoto, T. Hayashi, Angew. Chem.
2010, 122, 1682–1685; Angew. Chem. Int. Ed. 2010, 49, 1638–
1641; f) R. Shintani, M. Takeda, T. Nishimura, T. Hayashi,
Angew. Chem. 2010, 122, 4061–4063; Angew. Chem. Int. Ed.
2010, 49, 3969–3971; g) T. Nishimura, Y. Maeda, T. Hayashi,
Angew. Chem. 2010, 122, 7482–7485; Angew. Chem. Int. Ed.
2010, 49, 7324–7327; h) T. Nishimura, H. Makino, M. Na-
gaosa, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 12865–12867;
i) R. Shintani, M. Takeda, T. Tsuji, T. Hayashi, J. Am. Chem.
Soc. 2010, 132, 13168–13169.
a) C. Fisher, C. Defieber, T. Suzuki, E. M. Carreira, J. Am.
Chem. Soc. 2004, 126, 1628–1641; b) C. Defieber, J.-F. Paquin,
S. Serna, E. M. Carreira, Org. Lett. 2004, 6, 3873–3876; c) J.-
F. Paquin, C. R. J. Stephenson, C. Defieber, E. M. Carreira,
Org. Lett. 2005, 7, 3821–3824; d) J.-F. Paquin, C. Defieber,
C. R. J. Stevenson, E. M. Carreira, J. Am. Chem. Soc. 2005,
127, 10850–10851.
a) Z.-Q. Wang, C.-G. Feng, M.-H. Xu, G.-Q. Lin, J. Am. Chem.
Soc. 2007, 129, 5336–5337; b) C.-G. Feng, Z.-Q. Wang, P. Tian,
M.-H. Xu, G.-Q. Lin, Chem. Asian J. 2008, 3, 1511–1516; c)
C.-G. Feng, Z.-Q. Wang, C. Shao, M.-H. Xu, G.-Q. Lin, Org.
Lett. 2008, 10, 4101–4104; d) L. Wang, Z.-Q. Wang, M.-H. Xu,
G.-Q. Lin, Synthesis 2010, 3263–3267; e) Z.-Q. Wang, C.-G.
Feng, S.-S. Zhang, M.-H. Xu, G.-Q. Lin, Angew. Chem. 2010,
122, 5916–5919; Angew. Chem. Int. Ed. 2010, 49, 5780–5783; f)
C. Shao, H.-J. Yu, N.-Y. Wu, P. Tian, R. Wang, C.-G. Feng,
G.-Q. Lin, Org. Lett. 2011, 13, 788–791; g) Z. Cui, H.-J. Yu,
R.-F. Yang, W.-Y. Gao, C.-G. Feng, G.-Q. Lin, J. Am. Chem.
Soc. 2011, 133, 12394–12397.
a) T. Gendrineau, O. Chuzel, H. Eijsberg, J.-P. Genet, S.
Darses, Angew. Chem. 2008, 120, 7783–7786; Angew. Chem. Int.
Ed. 2008, 47, 7669–7672; b) T. Gendrineau, J.-P. Genet, S.
Darses, Org. Lett. 2009, 11, 3486–3489; c) T. Gendrineau, J.-P.
Genet, S. Darses, Org. Lett. 2010, 12, 308–310; d) M. K.
Brown, E. J. Corey, Org. Lett. 2010, 12, 172–175; e) Y. Luo,
A. J. Carnell, Angew. Chem. 2010, 122, 2810–2814; Angew.
Chem. Int. Ed. 2010, 49, 2750–2754; f) C. Shao, H.-J. Yu, N.-
Y. Wu, C.-G. Feng, G.-Q. Lin, Org. Lett. 2010, 12, 3820–3823;
g) G. Pattison, G. Piraux, H. W. Lam, J. Am. Chem. Soc. 2010,
132, 14373–14375; h) Q. Li, Z. Dong, Z.-X. Yu, Org. Lett.
2011, 13, 1122–1125.
ratory will focus on the employment of chiral diene ligands
1 in challenging metal-catalyzed asymmetric transforma-
tions.
Experimental Section
[3]
[4]
General Procedure for the Synthesis of Chiral Diene Ligand 1g: To
a solution of corresponding bistriflate (0.6 mmol), Pd(PPh3)4
(0.06 mmol), and 4-nitrophenylboronic acid (2.35 mmol) in toluene
(9.5 mL) was added EtOH (2.4 mL) and sat. aqueous Na2CO3
(4.9 mL) at room temperature under an atmosphere of argon, and
the resulting mixture was stirred at reflux. After 90 min, sat. aque-
ous NH4Cl was added, and the aqueous layer was extracted with
ethyl acetate (3ϫ15 mL). The combined organic layer was washed
with brine and dried with Na2SO4, filtered, and evaporated to give
the crude product, which was purified by column chromatography
over silica gel to give ligand 1g (104 mg, 46%) as an orange solid.
1H NMR (500 MHz, CDCl3): δ = 8.20–8.18 (m, 4 H), 7.53–7.52
(m, 2 H), 7.39–7.37 (m, 2 H), 7.00 (d, J = 1.3 Hz, 1 H), 6.93 (d, J
= 3.5 Hz, 1 H), 3.65 (dd, J = 3.5, 1.3 Hz, 1 H), 1.34 (s, 3 H), 1.20
(s, 3 H), 1.16 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ =
156.8, 154.0, 146.7, 146.7, 144.6, 144.1, 142.3, 140.7, 126.7 (2 CH),
125.1 (2 CH), 124.1 (2 CH), 123.7 (2 CH), 82.9, 66.6, 61.3, 21.4,
21.2, 11.0 ppm.
General Procedure for Rhodium-Catalyzed 1,4-Addition: A mixture
of [RhCl(C2H4)]2 (1.2 mg, 0.003 mmol), chiral diene ligand 1g
(2.7 mg, 0.0072 mmol), and phenylboronic acid (1.46 g, 12 mmol)
in EtOH (20 mL) was stirred for 20 min at 30 °C. 2-Cyclohexen-1-
one (2a; 577 mg, 6 mmol) was then added. After stirring for an-
other 20 min, 1.5 m KOH in EtOH (2.0 mL) was added. After com-
pletion of the reaction, the solvent was removed under reduced
pressure to give the crude product, which was purified by column
chromatography over silica gel (hexane/ethyl acetate, 19:1) to fur-
nish 3-phenylcyclohexanone (4aa, 971 mg, 93%) as a colorless oil.
The ee was determined with a Daicel Chiralcel IA column with
hexanes/2-propanol = 99:1, flow rate = 1.0 mL/min, retention
times: 12.05 min [(S)-enantiomer], 13.57 min [(R)-enantiomer];
95%ee. [α]1D9 = +24.1 (c = 0.92 in CHCl3). 1H NMR (400 MHz,
CDCl3): δ = 7.40–7.33 (m, 2 H), 7.29–7.23 (m, 3 H), 3.04 (tt, J =
11.8, 4.0 Hz, 1 H), 2.67–2.35 (m, 4 H), 2.23–2.07 (m, 2 H), 1.95–
1.74 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 210.9, 144.3,
128.7 (2 CH), 126.7, 126.5 (2 CH), 48.9, 44.7, 41.2, 32.8, 25.5 ppm.
[5]
[6]
Supporting Information (see footnote on the first page of this arti-
1
cle): Experimental procedures, HPLC traces, and copies of the H
[7]
and 13C NMR spectra.
Acknowledgments
This work was supported by grants from the National Science
Council (NSC 98-2113-M-003-009-MY2, NSC 99-2119-M-
003-002-MY2) and National Taiwan Normal University
(T10007000687).
[8]
[9]
W.-T. Wei, J.-Y. Yeh, T.-S. Kuo, H.-L. Wu, Chem. Eur. J. 2011,
17, 11405–11409.
Ligand 1g was chosen for the remaining studies after intensive
parallel screenings of ligands with the reaction parameters
shown in Tables 2 and 3.
When other solvents such as CH3CN, DMF, toluene, and
DCM were studied, the addition product was obtained with ee
values ranging from 89 to 94% in 13–77% yield.
[1] For reviews, see: a) R. Noyori (Ed.), Asymmetric Catalysis in
Organic Synthesis, Wiley, New York, 1994; b) E. N. Jacobsen;
A. Pfaltz, H. Yamamoto (Eds.), Comprehensive Asymmetric
Catalysis, Springer, Berlin, 1999, vol. 3; c) M. Sibi, S. Manyem,
Tetrahedron 2000, 56, 8033–8061; d) N. Krause, A. Hoffmann-
Röder, Synthesis 2001, 171–196; e) B. Heasley, Eur. J. Org.
Chem. 2009, 1477–1489; f) A. G. Schultz, Acc. Chem. Res.
1990, 23, 207–213.
[10]
2506
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 2503–2507