2274
RESEARCH ARTICLE – Pharmaceutics, Drug Delivery and Pharmaceutical Technology
13. Bhuniya S, Seo YJ, Kim BH. 2006. (S)-(+)-Ibuprofen-based hydro-
gelators: An approach toward anti-inflammatory drug delivery. Tetra-
hedron Lett 47(40):7153–7156.
14. Vemula PK, Cruikshank GA, Karp JM, John G. 2009. Self-
assembled prodrugs: An enzymatically triggered drug-delivery plat-
form. Biomaterials 30(3):383–393.
15. Bhuniya S, Park SM, Kim BH. 2005. Biotin-amino acid conjugates:
An approach toward self-assembled hydrogelation. Org Lett 7(9):1741–
1744.
16. Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B. 2002. Hydrophobic
interaction and hydrogen bonding cooperatively confer a vancomycin
hydrogel: A potential candidate for biomaterials. J Am Chem Soc
124(50):14846–14847.
17. Vale´ry C, Paternostre M, Robert B, Gulik-Krzywicki T, Narayanan
T, Dedieu JC, Keller G, Torres ML, Cherif-Cheikh R, Calvo P, Artzner
F. 2003. Biomimetic organization: Octapeptide self-assembly into
nanotubes of viral capsid-like dimension. Proc Natl Acad Sci USA
100(18):10258–10262.
18. Zhao F, Ma ML, Xu B. 2009. Molecular hydrogels of therapeutic
agents. Chem Soc Rev 38(4):883–891.
Figure 7. Cell viability of hydrogel of 2, HCPT, and HCPT hydrogel
from low to high concentration.
19. Mao L, Wang H, Tan M, Ou L, Kong D, Yang Z. 2011. Conjugation
of two complementary anti-cancer drugs confers molecular hydrogels
as a co-delivery system. Chem Commun 48(3):395–397.
20. Ou C, Zhang J, Zhang X, Yang Z, Chen M. 2013. Phenothiazine as
an aromatic capping group to construct a short peptide-based ‘super
ACKNOWLEDGMENT
The authors gratefully acknowledge the financial support
from the National Natural Science Foundation of China (No. gelator’. Chem Commun 49(18):1853–1855.
21. Yang C, Li D, FengZhao Q, Wang L, Wang L, Yang Z. 2013. Disul-
fide bond reduction-triggered molecular hydrogels of folic acid–Taxol
conjugates. Org Biomol Chem 11(40):6946–6951.
81173023), Graduate Student Innovation Foundation Project
of Huahai Pharmaceutical (No. CX13S-010HH), and Priority
Academic Program Development of Jiangsu Higher Education
Institutions (PAPD).
22. Shu C, Li R, Yin Y, Yin D, Gu Y, Ding L, Zhong W. 2014. Synergistic
dual-targeting hydrogel improves targeting and anticancer effect of
Taxol in vitro and in vivo. Chem Commun 50(97):15423–15426.
23. Soukasene S, Toft DJ, Moyer TJ, Lu H, Lee H-K, Standley SM,
Cryns VL, Stupp SI. 2011. Antitumor activity of peptide amphiphile
nanofiber-encapsulated camptothecin. ACS Nano 5(11):9113–9121.
24. Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellam B,
Marlow M. 2014. Insights into low molecular mass organic gelators:
A focus on drug delivery and tissue engineering applications. Soft Mat-
ter 10(2):237–256.
REFERENCES
1. Van Tomme SR, Storm G, Hennink WE. 2008. In situ gelling hy-
drogels for pharmaceutical and biomedical applications. Int J Pharm
355(1):1–18.
2. Lee KY, Mooney DJ. 2001. Hydrogels for tissue engineering. Chem
Rev 101(7):1869–1880.
25. Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit
E. 2013. Peptide-based hydrogel nanoparticles as effective drug deliv-
ery agents. Bioorgan Med Chem 21(12):3517–3522.
3. Dou QQ, Liow SS, Ye E, Lakshminarayanan R, Loh XJ. 2014.
Biodegradable thermogelling polymers: Working towards clinical ap-
plications. Adv Healthc Mater 3(7):977–988.
26. Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ.
2011. Encapsulation of curcumin in self-assembling peptide hydrogels
as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914.
27. Chung HJ, Park TG. 2009. Self-assembled and nanostructured hy-
drogels for drug delivery and tissue engineering. Nano Today 4(5):429–
437.
4. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. 2006. Hydrogels
in biology and medicine: From molecular principles to bionanotechnol-
ogy. Adv Mater 18(11):1345–1360.
5. Li Y, Qin M, Cao Y, Wang W. 2014. Designing the mechanical prop-
erties of peptide-based supramolecular hydrogels for biomedical appli-
cations. Sci China Phys Mech 57(5):849–858.
28. Langer R. 1998. Drug delivery and targeting. Nature 392(6679
Suppl):5–10.
29. Zhao F, Gao Y, Shi J, Browdy HM, Xu B. 2010. Novel anisotropic
supramolecular hydrogel with high stability over a wide pH range†.
Langmuir 27(4):1510–1512.
30. Aggeli A, Bell M, Carrick LM, Fishwick CW, Harding R, Mawer
PJ, Radford SE, Strong AE, Boden N. 2003. pH as a trigger of peptide
$-sheet self-assembly and reversible switching between nematic and
isotropic phases. J Am Chem Soc 125(32):9619–9628.
31. Paramonov SE, Jun H-W, Hartgerink JD. 2006. Self-assembly of
peptide-amphiphile nanofibers: The roles of hydrogen bonding and am-
phiphilic packing. J Am Chem Soc 128(22):7291–7298.
6. Talevi A, E Gantner M, E Ruiz M. 2014. Applications of nanosystems
to anticancer drug therapy (part I. nanogels, nanospheres, nanocap-
sules). Recent Pat Anti-Canc 9(1):83–98.
7. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A,
Peppas NA. 2009. Hydrogels in regenerative medicine. Adv Mater
21(32–33):3307–3329.
8. Gao Y, Kuang Y, Guo Z-F, Guo Z, Krauss IJ, Xu B. 2009.
Enzyme-instructed molecular self-assembly confers nanofibers and
a supramolecular hydrogel of taxol derivative. J Am Chem Soc
131(38):13576–13577.
9. Estroff LA, Hamilton AD. 2004. Water gelation by small organic
molecules. Chem Rev 104(3):1201–1218.
32. Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams
DJ. 2009. Controlled release from modified amino acid hydrogels gov-
erned by molecular size or network dynamics. Langmuir 25(17):10285–
10291.
33. Wheeldon IR, Gallaway JW, Barton SC, Banta S. 2008. Bioelec-
trocatalytic hydrogels from electron-conducting metallopolypeptides
coassembled with bifunctional enzymatic building blocks. Proc Natl
Acad Sci USA 105(40):15275–15280.
10. Weiss RG, Terech P. 2006. Molecular gels., SpringerBerlin, Ger-
many
11. Terech P, Weiss RG. 1997. Low molecular mass gelators of organic
liquids and the properties of their gels. Chem Rev 97(8):3133–3160.
12. Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B. 2002. Hydrophobic
interaction and hydrogen bonding cooperatively confer a vancomycin
hydrogel: A potential candidate for biomaterials. J Am Chem Soc
124(50):14846–14847.
Li et al., JOURNAL OF PHARMACEUTICAL SCIENCES 104:2266–2275, 2015
DOI 10.1002/jps.24481