Page 9 of 11
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
ACS Catal. 2016, 6, 1640-1648. (g) He, G.; Lu, G.; Guo, Z.; Liu,
see: (a) Farrington, E. J.; Barnard, C. F. J.; Rowsell, E.; Brown,
J. M. Ruthenium Complex-Catalysed Heck Reactions of
Areneboronic Acids; Mechanism, Synthesis and Halide
Tolerance. Adv. Synth. Catal. 2005, 347, 185-195. (b) Ueura, K.;
Satoh, T.; Miura, M. An Efficient Waste-Free Oxidative
Coupling via Regioselective C − H Bond Cleavage: ꢀ Rh/Cu-
Catalyzed Reaction of Benzoic Acids with Alkynes and Acrylates
under Air. Org. Lett. 2007, 9, 1407-1409. (c) Tsai, A. S.; Tauchert,
M. E.; Bergman, R. G.; Ellman, J. A. Rhodium(III)-Catalyzed
Arylation of Boc-Imines via C−H Bond Functionalization. J. Am.
Chem. Soc. 2011, 133, 1248-1250. (d) Karthikeyan, J.;
Haridharan, R.; Cheng, C.-H. Rhodium(III)-Catalyzed Oxidative
C−H Coupling of N-Methoxybenzamides with Aryl Boronic
Acids: One-Pot Synthesis of Phenanthridinones. Angew. Chem.,
Int. Ed. 2012, 51, 12343-12347. (e) Itoh, M.; Hirano, K.; Satoh,
T.; Shibata, Y.; Tanaka, K.; Miura, M. Rhodium- and Iridium-
Catalyzed Dehydrogenative Cyclization through Double C–H
Bond Cleavages To Produce Fluorene Derivatives. J. Org. Chem.
2013, 78, 1365-1370. (f) Zheng, J.; Zhang, Y.; Cui, S. Rh(III)-
Catalyzed Selective Coupling of N-Methoxy-1H-indole-1-
carboxamides and Aryl Boronic Acids. Org. Lett. 2014, 16, 3560-
3563. (g) Wang, H.; Yu, S.; Qi, Z.; Li, X. Rh(III)-Catalyzed C–H
Alkylation of Arenes Using Alkylboron Reagents. Org. Lett.
2015, 17, 2812-2815. (h) Wang, X.; Yu, D. -G.; Glorius, F.
Cp*RhIII-Catalyzed Arylation of C(sp3)–H Bonds. Angew. Chem.,
Int. Ed. 2015, 54, 10280-10283. (i) Wang, H. -W.; Cui, P. -P.;
Sun, W. -Y.; Yu, J. -Q. Ligand-Promoted Rh(III)-Catalyzed
Coupling of Aryl C–H Bonds with Arylboron Reagents. J. Org.
Chem. 2016, 81, 3416-3422. (j) Nareddy, P.; Jordan, F.; Szostak,
M. Recent Developments in Ruthenium-Catalyzed C–H
Arylation: Array of Mechanistic Manifolds. ACS Catal. 2017, 7,
5721-5745. (k) Knecht, T.; Pinkert, T.; Dalton, T.; Lerchen, A.;
Glorius, F. Cp*RhIII-Catalyzed Allyl-Aryl Coupling of Olefins
and Arylboron Reagents Enabled by C(sp3)–H Activation. ACS
Catal. 2019, 9, 1253-1257
P.; Chen, G. Benzazetidine synthesis via palladium-catalysed
intramolecular C−H amination. Nat. Chem. 2016, 8, 1131-1136.
(h) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei,
T.-S. Palladium-Catalyzed C(sp3)–H Oxygenation via
Electrochemical Oxidation. J. Am. Chem. Soc. 2017, 139, 3293-
3298. (i) Zeng, L.; Tang, S.; Wang, D.; Deng, Y.; Chen, J.-L.; Lee,
J.-F.; Lei, A. Cobalt-Catalyzed Intramolecular Oxidative C(sp3)–
H/N–H Carbonylation of Aliphatic Amides. Org. Lett. 2017, 19,
2170-2173.
(5) For the oxidative facilitation of reductive elimination from
Pd and Ni species, see: (a) Koo, K.; Hillhouse, G. L. Carbon-
Nitrogen Bond Formation by Reductive Elimination from
Nickel(II) Amido Alkyl Complexes. Organometallics 1995, 14,
4421-4423. (b) Lanci, M. P.; Remy, M. S.; Kaminsky, W.; Mayer,
J. M.; Sanford, M. S. Oxidatively induced reductive elimination
from (tBu2bpy)Pd(Me)2: palladium(IV) intermediates in a one-
electron oxidation reaction. J. Am. Chem. Soc. 2009, 131, 15618-
15620. (c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent
advances in homogeneous nickel catalysis. Nature 2014, 509,
299-309. (d) Bour, J. R.; Camasso, N. M.; Meucci, E. A.; Kampf,
J. W.; Canty, A. J.; Sanford, M. S. Carbon-Carbon Bond-Forming
Reductive Elimination from Isolated Nickel(III) Complexes. J.
Am. Chem. Soc. 2016, 138, 16105-16111. (e) Schultz, J. W.;
Fuchigami, K.; Zheng, B.; Rath, N. P.; Mirica, L. M. Isolated
Organometallic Nickel(III) and Nickel(IV) Complexes Relevant
to Carbon-Carbon Bond Formation Reactions. J. Am. Chem. Soc.
2016, 138, 12928-12934. (f) Watson, M. B.; Rath, N. P.; Mirica,
L. M. Oxidative C–C Bond Formation Reactivity of
Organometallic Ni(II), Ni(III), and Ni(IV) Complexes. J. Am.
Chem. Soc. 2017, 139, 35-38.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) For the oxidative facilitation of reductive elimination from
other metal species, see: (a) Komiya, S.; Albright, T. A.;
Hoffmann, R.; Kochi, J. K. The stability of organogold
compounds. Hydrolytic, thermal, and oxidative cleavages of
dimethylaurate(I) and tetramethylaurate(III). J. Am. Chem. Soc.
1977, 99, 8440-8447. (b) Lau, W.; Huffman, J. C.; Kochi, J. K.
(10) For Ir, Rh, and Ru-catalyzed carbon–heteroatom bond
formation, see: (a) Hyster, T. K.; Rovis, T. Rhodium-Catalyzed
Oxidative Cycloaddition of Benzamides and Alkynes via C−H/N
Electrochemical
oxidation-reduction
of
organometallic
complexes. Effect of the oxidation state on the pathways for
reductive elimination of dialkyliron complexes. Organometallics
1982, 1, 155-169. (c) Nagashima, H.; Ara, K.-I.; Yamaguchi, K.;
Itoh, K. Allyldialkyl complexes of ruthenium(IV): Preparation
and reductive C−C bond formation followed by C−H bond
activation. J. Organomet. Chem. 1987, 319, C11-C15. (d)
Pedersen, A.; Tilset, M. Oxidatively induced reductive
eliminations. Kinetics and mechanism of the elimination of
ethane from the 17-electron cation radical of rhodium complex
Cp*Rh(PPh3)(CH3)2. Organometallics 1993, 12, 56-64. (e) Poli,
R. Open shell organometallics as a bridge between Werner-type
and low-valent organometallic complexes. The effect of the spin
state on the stability, reactivity, and structure. Chem. Rev. 1996,
96, 2135-2204. (f) Wolf, W. J.; Winston, M. S.; Toste, F. D.
Exceptionally fast carbon–carbon bond reductive elimination
from gold(III). Nat. Chem. 2013, 6, 159.
−H Activation. J. Am. Chem. Soc. 2010, 132, 10565-10569. (b)
Ackermann, L.; Fenner, S. Ruthenium-Catalyzed C–H/N–O
Bond Functionalization: Green Isoquinolone Syntheses in Water.
Org. Lett. 2011, 13, 6548-6551. (c) Suzuki, C.; Hirano, K.; Satoh,
T.; Miura, M. Direct Synthesis of N–H Carbazoles via
Iridium(III)-Catalyzed Intramolecular C–H Amination. Org. Lett.
2015, 17, 1597-1600. (d) Okada, T.; Nobushige, K.; Satoh, T.;
Miura, M. Ruthenium-Catalyzed Regioselective C–H Bond
Acetoxylation on Carbazole and Indole Frameworks. Org. Lett.
2016, 18, 1150-1153. (e) Chen, C.; Pan, Y.; Zhao, H.; Xu, X.; Xu,
J.; Zhang, Z.; Xi, S.; Xu, L.; Li, H. A versatile rhodium(iii)
catalyst for direct acyloxylation of aryl and alkenyl C–H bonds
with carboxylic acids. Org. Chem. Front. 2018, 5, 415-422. (f)
Qiu, Y.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.;
Scheremetjew, A.; Ackermann, L. Electrooxidative Rhodium-
CatalyzedꢀC−H/C−H Activation: Electricity as Oxidant for
Cross-Dehydrogenative Alkenylation. Angew. Chem., Int. Ed.
2018, 57, 5828-5832. (g) Qiu, Y.; Stangier, M.; Meyer, T. H.;
Oliveira, J. C. A.; Ackermann, L. Iridium-Catalyzed
Electrooxidative C−H Activation by Chemoselective Redox-
Catalyst Cooperation. Angew. Chem., Int. Ed. 2018, 57, 14179-
14183.
(7) Shin, K.; Park, Y.; Baik, M. H.; Chang, S. Iridium-catalysed
arylation of C-H bonds enabled by oxidatively induced reductive
elimination. Nat. Chem. 2018, 10, 218-224.
(8) (a) Kim, H.; Shin, K.; Chang, S. Iridium-Catalyzed C–H
Amination with Anilines at Room Temperature: Compatibility of
Iridacycles with External Oxidants. J. Am. Chem. Soc. 2014, 136,
5904-5907. (b) Kim, H.; Chang, S. Iridium-Catalyzed Direct C–
H Amination with Alkylamines: Facile Oxidative Insertion of
Amino Group into Iridacycle. ACS Catal. 2015, 5, 6665-6669. (c)
Park, Y.; Kim, Y.; Chang, S. Transition Metal-Catalyzed C-H
Amination: Scope, Mechanism, and Applications. Chem. Rev.
2017, 117, 9247-9301.
(11) For a general review, see: Gensch, T.; Hopkinson, M. N.;
Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C–H
activation: examples and concepts. Chem. Soc. Rev. 2016, 45,
2900-2936.
(12) For a few reports considered high-valent Ir and Rh
intermediates for coupling reactions, see: (a) Li, L.; Brennessel,
W. W.; Jones, W. D. An Efficient Low-Temperature Route to
(9) For Ir, Rh, and Ru-catalyzed carbon–carbon bond formation,
9
ACS Paragon Plus Environment