ORGANIC
LETTERS
2008
Vol. 10, No. 14
2991-2993
Near-Infrared Fluorophores Containing
Benzo[c]heterocycle Subunits
Scott T. Meek, Evgueni E. Nesterov, and Timothy M. Swager*
Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Received April 30, 2008
ABSTRACT
The syntheses and spectroscopic properties of eight new push-pull-type near-infrared fluorophores that contain either isobenzofuran or
isothianaphthene subunits are presented. The isobenzofuran dyes demonstrate significantly red-shifted absorption compared with their
isothianaphthene counterparts, which is attributed to isobenzofuran’s more potent pro-quinoidal character.
In ViVo near-infrared (NIR) fluorescence imaging is rapidly
emerging as a powerful diagnostic method.1 In the NIR
region (650-900 nm) biological chromophores exhibit low
absorption and autofluorescence,2 thus allowing photons to
pass through the tissue and rendering this technique relatively
noninvasive. With applications such as vascular mapping of
the heart3 and brain4 and visualization of various pathologies
including tumors,5 atherosclerosis,6 and ꢀ-amyloid plaques,7
the demand for new NIR fluorescent contrast agents is ever
increasing.
Our group recently reported the synthesis and in ViVo
imaging properties of NIAD-4 (1), NIM-1 (2), and NIM-2
(3), all donor-acceptor type dyes (Figure 1).7a,8 In the case
of 2 and 3, it was found that the incorporation of ben-
zo[c]heterocycle isothianaphthene (ITN) into the conjugated
bridge red-shifted both the absorption and emission substan-
tially. Herein we explore the use of benzo[c]heterocycle
isobenzofuran (IBF) in place of ITN as a molecular
component in this class of dyes.
Isothianaphthene has a relatively long history as a component
in functional materials, with examples in fluorophores,9 OLE-
Ds,10 photovoltaics,11 and low band gap polmyers, of which
polyisothianaphthene (PITN)12 is the progenitor. The smaller
band gap of these ITN-containing materials over similar
(1) (a) Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626. (b) Rao,
J; Dragulescu-Andrasi, A; Yao, H. Curr. Opin. Biotechnol. 2007, 18, 17.
(2) (a) Weissleder, R. Nat. Biotechnol. 2001, 19, 316. (b) Weissleder,
R. Nat. Biotechnol. 2001, 19, 316.
(3) Nakayama, A.; del Monte, F.; Hajjar, R. J.; Frangioni, J. V. Mol.
Imaging 2002, 1, 365.
(4) Sankatani, K.; Kashiwasake-Jibu, M.; Taka, Y.; Wang, S.; Zou, H.;
Yamamoto, K.; Shimizu, K. J. Neurosurg. 1997, 87, 738.
(5) Weissleder, R.; Tung, C.; Mahmood, U.; Weissleder, R.; Tung, C.;
Mahmood, U.; Bogdanov, A, Jr Nat. Biotechnol. 1999, 17, 375.
(6) Chen, J.; Tung, C. H.; Mahmood, U.; Ntziachristos, V.; Gyurko,
R.; Fishman, M. C.; Huang, P. L.; Weissleder, R. Circulation 2002, 105,
2766.
(8) Xiang, Z.; Nesterov, E. E.; Skoch, J.; Lin, T.; Hyman, B. T.; Swager,
T. M.; Bacskai, B. J.; Reeves, S. A. J. Histochem. Cytochem. 2005, 53,
1511
.
(9) Mohanakrishnan, A. K.; Lakshmikantham, M. V.; McDougal, C.;
Cava, M. P.; Baldwin, J. M.; Metzger, R. M. J. Org. Chem. 1998, 63, 3105.
(10) Mitschke, U.; Bauerle, P. J. Chem. Soc., Perkin Trans. 1 2001, 7,
740.
(7) (a) Nesterov, E. E.; Skoch, J.; Hyman, B.; Klunk, W. E.; Bacskai,
B. J.; Swager, T. M. Angew. Chem., Int. Ed. 2005, 44, 5452. (b)
Hintersteiner, M.; Enz, A.; Jaton, A.; Kinzy, W.; Kneuer, R.; Neumann,
U.; Rudin, M.; Staufenbiel, M.; Stoeckli, M.; Wiederhold, K.; Gremlich,
H. Nat. Biotechnol. 2005, 23, 577.
(11) Vangeneugden, D. L.; Vanderzande, D. J. M.; Salbeck, J.; van Hal,
P. A.; Janssen, R. A. J.; Hummelen, J. C.; Brabec, C. J.; Shaheen, S. E.;
Sariciftci, N. S. J. Phys. Chem. B 2001, 105, 11106.
(12) Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49,
3382.
10.1021/ol800988w CCC: $40.75
Published on Web 06/19/2008
2008 American Chemical Society