C O M M U N I C A T I O N S
Table 2. Asymmetric Nitro-Mannich Reaction of N-Boc Aldimines 2
with Nitromethane 3a Using Oganocatalyst 1da
2-naphthyl N-Boc aldimine (2i), and heteroaryl aldimines (2k and
2l) is noteworthy (Table 3, entries 7, 9, 10, and 11), as such N-Boc
aldimines were shown to be relatively challenging substrates in
previous studies involving chiral metal complexes9 and organo-
catalysts6b,f Alkyl N-Boc aldimine also works well in this reaction
leading to 93:7 dr and 97% ee (Table 3, entry 16).
entry
R
product
yield (%)b
ee (%)c
In conclusion, we have developed highly anti-selective (93:7-99:
1) and excellent enantioselective (96-99% ee) nitro-Mannich
reactions catalyzed by chiral bifunctional thiourea catalyst bearing
multiple hydrogen-bonding donors that perform well over a broad
scope of substrates. This methodology presented herein is the best
result for organocatalytic asymmetric nitro-Mannich reactions
reported so far, and nicely complements the highly syn-selective
version using a herterobimetallic Cu-Sm-Shiff base complex.
Further investigations into the mechanism and applications of the
present bifunctional thiourea catalysts in other catalytic asymmetric
reactions are underway in our laboratory.
1
2
3
4
Ph (2a)
4a
4b
4c
4d
4e
4f
4g
4h
4i
97
88
85
94
93
90
91
96
89
98
99
91
99
99
99
99
99
99
99
99
99
97
99
96
99
98
p-Me-Ph (2b)
p-MeO-Ph (2c)
o-MeO-Ph (2d)
p-Cl-Ph (2e)
o-Cl-Ph (2f)
5
6
7d
8
p-F-Ph (2g)
p-CF3-Ph (2h)
2-Naphthyl (2i)
1-Naphthyl (2j)
2-Furyl (2k)
3-Pyridyl (2l)
iBu (2m)
9
10
11
12
13
4j
4k
4l
4m
Acknowledgment. This work was supported by National
Natural Science Foundation of China (20642005, 20702039) and
the startup fund from Wuhan University.
a See Table 1. b See Table 1. c See Table 1. d Reaction was performed
at -50 °C in 0.5 mL DCM in 12 h; 95% ee was achieved in acetonitrile
at -20 °C.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
Table 3. High anti-Selective Catalytic Asymmetric Nitro-Mannich
Reactions of N-Boc Aldimines with Nitroalkanesa
References
(1) For recent advances on this reaction, see: (a) Westermann, B. Angew. Chem.,
Int. Ed. 2003, 42, 151. (b) Ting, A.; Schaus, S. E. Eur. J. Org. Chem.
2007, 5797.
yieldb
(%)
drc
(anti:syn) (%)
eed
(2) (a) Bernadi, L.; Bonini, B. F.; Capito, I, E.; Dessole, G.; Comes-Franchini,
M.; Fochi, M.; Ricci, A. J. Org. Chem. 2004, 69, 8168. (b) Lloyd, D. H.;
Nichols, D. E. J. Org. Chem. 1986, 51, 4294. (c) Barrett, A. G. M.; Spilling,
C. D. Tetrahedron Lett. 1988, 29, 5733. (d) Sturgess, M. A.; Yarberry,
D. J. Tetrahedron Lett. 1993, 34, 4743. (e) Adams, H.; Anderson, J. C.;
Peace, S.; Pennell, A. M. K. J. Org. Chem. 1998, 63, 9932.
(3) (a) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017. (b) Foresti, E.;
Palmieri, G.; Petrini, M.; Profeta, R. Org. Biomol. Chem. 2003, 1, 4275.
(4) (a) Yamada, K.-I.; Harwood, S. J.; Groger, H.; Shibasaki, M. Angew. Chem.,
Int. Ed. 1999, 38, 3504. (b) Yamada, K.-I.; Moll, G.; Shibasaki, M. Synlett
2001, 980.
(5) (a) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2001, 40, 2992. (b) Knudsen, K. R.; Risgaard, T.; Nishiwaki,
N.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843.
(c) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
(d) Anderson, J. C.; Blake, A. J.; Howell, G. P.; Wilson, C. J. J. Org.
Chem. 2005, 70, 549. (e) Anderson, J. C.; Howell, G. P.; Lawrence, R. M.;
Wilson, C. J. J. Org. Chem. 2005, 70, 5665. (f) Palomo, C.; Oiarbide, M.;
Halder, R.; Laso, A.; Lo´ıpez, R. Angew. Chem., Int. Ed. 2006, 45, 117. (g)
Trost, B. M.; Lupton, D. W. Org. Lett. 2007, 9, 2023. (h) Gao, F.; Zhu, J.;
Tang, J. Y.; Deng, M.; Qian, C. Chirality 2006, 18, 741. (i) Lee, A.; Kim,
W.; Lee, J.; Hyeon, T.; Kim, B. M. Tetrahedron: Asymmetry 2004, 15,
2595.
entry
R
R′
catalyst product
1
2
3
4
5
6
7
8
9
Ph (2a)
Ph (2a)
Ph (2a)
p-Me-Ph (2b)
p-MeO-Ph (2c) Me (3b)
p-Cl-Ph (2e)
o-Cl-Ph (2f)
p-CF3-Ph (2g) Me (3b)
2-naphthyl (2i) Me (3b)
Me (3b)
Me (3b)
Me (3b)
Me (3b)
1a
1b
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
5ab
5ab
5ab
5bb
5cb
5eb
5fb
5gb
5ib
5kb
5lb
5ac
5bc
5cc
5ad
5mb
88
90
92
90
95
88
93
97
91
93
88
94
99
93
95
93
80:20
93:7
97:3
96:4
98:2
97:3
96:4
97:3
97:3
94:6
96:4
99:1
97:3
99:1
99:1
93:7
76
87
99
98
98
99
96
99
97
96
99
99
99
98
99
97
Me (3b)
Me (3b)
10 2-furyl (2k)
11 3-pyridyl (2l)
12 Ph (2a)
13 p-Me-Ph (2b)
14 p-MeO-Ph (2c) Et (3c)
Me (3b)
Me (3b)
Et (3c)
Et (3c)
15 Ph (2a)
Bn (3d)
Me (3b)
16 iBu (2m)
(6) (a) Robak, M. T.; Trincado, M.; Ellman, J. A. J. Am. Chem. Soc. 2007,
129, 15110. (b) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005,
44, 466. (c) Palomo, C.; Oiarbide, M.; Halder, R.; Laso, A.; Lopez, R.
Angew. Chem., Int. Ed. 2006, 45, 117. (d) Wang, C.; Zhou, Z.; Tang, C.
Org. Lett. 2008, 10, 1707. (e) Okino, T.; Nakamura, A.; Furukawa, T.;
Takemoto, Y. Org. Lett. 2004, 6, 625. (f) Xu, X. N.; Furukawa, T.; Okino,
T.; Miyabe, H.; Takemoto, Y. Chem.sEur. J. 2006, 12, 466.
(7) (a) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004,
126, 3418. (b) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am.
Chem. Soc. 2007, 129, 3466. (c) Singh, A.; Johnston, J. N. J. Am. Chem.
Soc. 2008, 130, 5866.
(8) (a) Palomo, C.; Oiarbide, M.; Laso, A.; Lo´ıpez, R. J. Am. Chem. Soc. 2005,
127, 17622. (b) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernadi,
L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 7975. (c) Bernardi, L.; Fini,
F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2006, 62, 375. (d)
Bode, C. M.; Ting, A.; Schaus, S. E. Tetrahedron 2006, 62, 11499.
(9) Handa, S.; Gnanadesikan, V.; Matsunag, S.; Shibasaki, M. J. Am. Chem.
Soc. 2007, 129, 4900.
a See Table 1. b See Table 1. c Diastereomeric ratio was determined
by HPLC analysis. Minor syn-isomer was not detected on the crude 1H
NMR. d Enantiomeric excesses were determined by chiral HPLC
analysis.
Having succeeded in the enantioselective nitro-Mannich reaction
of N-Boc aldimine with nitromethane, we then investigate the nitro-
Mannich reaction of N-Boc aldimine with other nitroalkanes that
can result in the generation of two contiguous nitrogen-bearing
stereogenic centers. The scope of the reaction of nitroalkanes 3
with N-Boc aldimines 2 is summarized in Table 3.11,12 Indeed, all
tested nitroalkanes and various N-Boc aldimines have proven to
be excellent substrates with respect to diastereo-/enantioselectivity
and reactivity using 1d as the catalyst. Nitroethane 3b and
nitroalkanes 3c and 3d showed the same reactivity as nitromethane
3a, and the corresponding products were obtained in high yields
and excellent diastereo-/enantioselectivities (93:7-99:1 dr; 96-99%
ee). The consistently excellent diastereo-/enantioselectivity obtained
with the sterically hindered ortho-substituted N-Boc aldimine (2f),
(10) Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008,
1431.
(11) ꢀ-nitroamine 5 was named as anti-isomer according to Shibasaki’s paper.
(12) The absolute configurations of the known products were assigned by HPLC
and optical rotation comparisons with the reported data (see refs 6b, 6d,
and Supporting Information), and those of other adducts were deduced on
the basis of these results.
JA803538X
9
J. AM. CHEM. SOC. VOL. 130, NO. 27, 2008 8607