including the purification and recovery of ligand and the
reproducibility and scalability of coupling reactions.
With this result in hand, we then conducted the study to
identify the optimum conditions for Cr-mediated catalytic
asymmetric 2-haloallylation, thereby revealing the following.
First, the complexation of CrBr3 with B is best achieved
under the condition of B/CrBr3/CoPc/Mn/Et3N/THF/42 °C/
1.5 h.1,12 Second, CoPc is a better activator than Fe(TMHD)3
(iron tris(2,2,6,6-tetramethyl-3,5-heptanedione)).1 Third, al-
though both Zr(Cp)2Cl2 and TMS-Cl are effective dissocia-
tion agents, a higher yield is generally observed in the
presence of the former.13,14 Fourth, the optimum concentra-
tion of reaction is 0.2 M. Fifth, 2-haloallylation is effectively
achieved in the presence of 5 mol % of CrBr3 and 5.5 mol
% of B.15
For this reason, we initiated a search for a crystalline
sulfonamide-based ligand, which should act as an effective
(i.e., equal to or better than A) catalyst for catalytic
asymmetric 2-haloallylation and allylation. We began with
a structure modification on the benzylsufonyl moiety.
Through this effort, sulfonamide ligand B and its enantiomer
ent-B (Figure 1), prepared from natural and unnatural tert-
Under the optimized conditions, 2-haloallylations were
conducted (Table 1). 2-Iodoallyl, 2-bromoallyl, and 2-chlo-
roallyl bromides were coupled with aldehydes 4a and 4b.
(6) For the synthetic work on the marine natural product halichondrins
from this laboratory, see: (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.;
Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero,
D. M.; Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162. (b) Choi, H.-w.;
Demeke, D.; Kang, F.-A.; Kishi, Y.; Nakajima, K.; Nowak, P.; Wan, Z.-
K.; Xie, C Pure Appl. Chem. 2003, 75, 1. (c) Namba, K.; Jun, H.-S.; Kishi,
Y. J. Am. Chem. Soc. 2004, 126, 7770. (d) Namba, K.; Kishi, Y. J. Am.
Chem. Soc. 2005, 127, 15382. (e) Kaburagi, Y.; Kishi, Y Org. Lett. 2007,
Figure 1. New crystalline sulfonamide ligands B and ent-B.
9, 723, and references cited therein
.
(7) For synthetic work by Salomon, Burke, Yonemitsu, and Phillips,
see: (a) Kim, S.; Salomon, R. G. Tetrahedron Lett. 1989, 30, 6279. (b)
Cooper, A. J.; Pan, W.; Salomon, R. G. Tetrahedron Lett. 1993, 34, 8193,
and references cited therein. (c) Burke, S. D.; Lee, K. C.; Santafianos, D.
Tetrahedron Lett. 1991, 32, 3957. (d) Lambert, W. T.; Hanson, G. H.;
Benayoud, F.; Burke, S. D. J. Org. Chem. 2005, 70, 9382, and references
cited therein. (e) Horita, K.; Hachiya, S.; Nagasawa, M.; Hikota, M.;
Yonemitsu, O. Synlett 1994, 38. (f) Horita, K.; Nishibe, S.; Yonemitsu, O.
Phytochem. Phytopharm. 2000, 386, and references cited therein. (g)
leucinols, respectively, in 20-30 g,10 were found to exhibit
an outstanding crystallinity.11
Our next task was to demonstrate the effectiveness of B
for catalytic asymmetric 2-haloallylation. We were delighted
to observe that, under the previously used conditions (ligand/
CrBr3/cobalt phthalocyanine (CoPc)/Mn/ Et3N/THF/rt, fol-
lowed by addition of 2,6-lutidine, two coupling partners, and
TMS-Cl),1 the new ligand B performed at least as well as
the first-generation ligand A.
Henderson, J. A.; Jackson, K. L.; Phillips, A. L. Org. Lett. 2007, 9, 5299
.
(8) (a) Zheng, W.; Seletsky, B. M.; Palme, M. H.; Lydon, P. J.; Singer,
L. A.; Chase, C. E.; Lemelin, C. A.; Shen, Y.; Davis, H.; Tremblay, L.;
Towle, M. J.; Salvato, K. A.; Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield,
B. A.; Yu, M. J. Bioorg. Med. Chem. Lett. 2004, 14, 5551. (b) Yu, M. J.;
Kishi, Y.; Littlefield, B. A. In Anticancer Agents from Natural Products,
Eds. Cragg, G. M., Kingston, D. G. I., Newman, D. J., Eds.; CRC Press:
Boca Raton, FL, 2005; pp 241-265. (c) Littlefield, B. A.; Palme, M. H.;
Seletsky, B. M.; Towle, M. J.; Yu, M. J.; Zheng, W. U.S. Patents 6214865
(3) For Cr-mediated enantioselective allylation, see: (a) Cazes, B.;
Vernière, C.; Gore´, J. Synth. Commun. 1983, 13, 73. (b) Chen, C.; Tagami,
K.; Kishi, Y J. Org. Chem. 1995, 60, 5386. (c) Namba, K.; Kishi, Y. Org.
Lett. 2004, 6, 5031, ref 1 and references cited therein. (d) Sugimoto, K.;
Aoyagi, S.; Kibayashi, C. J. Org. Chem. 1997, 62, 2322. (e) Bandini, M.;
Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed.
1999, 38, 3357. (f) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Chem.
Commun. 2002, 919, and references cited therein. (g) Inoue, M.; Suzuki,
T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140. (h) Inoue, M.; Nakada,
M. Angew. Chem., Int. Ed. 2006, 45, 252, and references cited therein. (i)
Berkessel, A.; Menche, D.; Sklo¨rtz, C. A.; Schroder, M.; Paterson, I. Angew.
Chem., Int. Ed. 2003, 42, 1032. (j) Lee, J.-Y.; Miller, J. J.; Hamilton, S. S.;
Sigman, M. S Org. Lett. 2005, 7, 1837. (k) Miller, J. J.; Sigman, M. S
J. Am. Chem. Soc. 2007, 129, 2752. (l) Xia, G.; Yamamoto, H. J. Am.
Chem. Soc. 2006, 128, 2554. (m) Xia, G.; Yamamoto, H. J. Am. Chem.
Soc. 2007, 129, 496.
and 6365759 and International Patent WO99/65894
(9) For the synthetic value of this functional group, for example, see
.
Scheme 1 in: (a) Corey, E. J.; Yu, C-M.; Kim, S. S. J. Am. Chem. Soc.
1989, 111, 5495
.
(10) This ligand was synthesized as depicted below. For the details, see
the Supporting Information.
(4) For reviews on metal-mediated enantioselective allylation, for
example, see: (a) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243. (b)
Marshall, J. A. Chem. ReV. 1996, 96, 31. (c) Denmark, S. E.; Fu, J. Chem.
ReV. 2003, 103, 2763.
(11) In addition to 2,6-dimethylbenzylsulfonamide B, 2-methylbenzyl-,
2,4-dimethylbenzyl-, and 2,5-dimethylbenzylsulfonamides were tested, but
all of them existed as oils. Using the procedure shown in ref,10 we attempted
(5) For the isolation of the halichondrins from a marine sponge
Halichondria okadai Kadota, see: (a) Uemura, D.; Takahashi, K.; Yama-
moto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y J. Am. Chem.
Soc. 1985, 107, 4796. (b) Hirata, Y.; Uemura, D Pure Appl. Chem. 1986,
58, 701. For isolation of the halichondrins from different species of sponges,
see: (c) Pettit, G. R.; Herald, C. L.; Boyd, M. R.; Leet, J. E.; Dufresne, C.;
Doubek, D. L.; Schmidt, J. M.; Cerny, R. L.; Hooper, J. N. A.; Rutzler, K.
C J. Med. Chem. 1991, 34, 3339. (d) Pettit, G. R.; Tan, R.; Gao, F.;
Williams, M. D.; Doubek, D. L.; Boyd, M. R.; Schmidt, J. M.; Chapuis,
J. C.; Hamel, E.; Bai, R.; Hooper, J. N. A.; Tackett, L. P J. Org. Chem.
1993, 58, 2538. (e) Litaudon, M.; Hart, J. B.; Blunt, J. W.; Lake, R. J.;
Munro, M. H; G, Tetrahedron Lett. 1994, 35, 9435. (f) Litaudon, M.;
Hickford, S. J. H.; Lill, R. E.; Lake, R. J.; Blunt, J. W.; Munro, M. H. G.
J. Org. Chem. 1997, 62, 1868.
to synthesize 2,4,6-trimethylbenzylsulfonyl chloride, but unsuccessfully.
(12) The tested conditions included: complexation at rt for 45 min, 1.5 h,
and 2.5 h; complexation at 42 °C for 45 min, 1.5 h, and 2.5 h. We attempted
to follow the complexation event by react IR spectroscopy, but the result
was not conclusive. Therefore, we relied on the overall performance
(asymmetric induction and yield) of 2-haloallylation to draw this conclusion.
We should note that, with this optimized complexation protocol, the
reproducibility of 2-haloallylation was also improved
(13) Fu¨rstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349
(14) Namba, K.; Kishi, Y. Org. Lett. 2004, 6, 5031
(15) The catalyst loading was tested for the case of 2 + 4a f 7a; the
following results were obtained: 10 mol % (yield ) 85%, ee ) 93%), 5
mol % (yield ) 76%, ee ) 92%), and 2.5 mol % (yield ) 60%, ee )
91%).
.
.
.
3074
Org. Lett., Vol. 10, No. 14, 2008