LETTER
Synthetic Applications of 2-(Azidomethyl)allyltrimethylsilane
495
(24) For reaction of maleimide with azides, see: Awad, W. I.;
Omran, S. M. A. R.; Nagieb, F. Tetrahedron 1963, 1400.
(25) D’Auria, M.; Racioppi, R.; Viggiani, L.; Zanirato, P. Eur. J.
Org. Chem. 2009, 932.
doallylsilane highlight the real scope of the new scaffold,
which can be considered as a useful multi-reactive system
for application in diversity-oriented synthesis.
(26) Scheiner, P. J. Org. Chem. 1967, 32, 2022.
(27) For a previous example of failure in the use of microwaves
to accelerate a thermal reaction, see: Piras, L.; Ghiron, C.;
Minetto, G.; Taddei, M. Tetrahedron Lett. 2008, 49, 459.
(28) Leadbeater, N. E.; Torenius, H. M. J. Org. Chem. 2002, 67,
3145.
Acknowledgment
The authors thanks Sigma-tau Pharmaceuticals Inc. (Pomezia,
Rome, Italy) and MIUR (Rome, PRIN Project
2009RMW3Z5_006) for financial support.
n
R
(29) Chen, W.; Gutmann, B.; Kappe, C. O. ChemistryOpen 2012,
1, 39.
(30) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95,
3300.
Supporting Information for this article is available online at
m
o
ti
(31) A microwave-assisted allylation of acetals with
allyltrimethylsilane in the presence of Cu(I) salts has been
reported. However, when azidoallylsilane 2 was reacted
with benzaldehyde dimethyl acetal and phenylacetylene in
the presence of CuBr under the conditions reported in the
paper, triazole allylsilane 17 was the only product isolated.
See: Jung, M. J.; Maderna, A. J. Org. Chem. 2004, 69, 7755.
(32) For a similar one-pot reaction, see: Ishikawa, H.; Suzuki, T.;
Hayashi, Y. Angew. Chem. Int. Ed. 2009, 48, 1304.
(33) Identified as in: Wang, Z.-X.; Zao, Z.-G. J. Heterocycl.
Chem. 2007, 44, 89.
Reference and notes
(1) Chiba, S. Synlett 2012, 23, 21.
(2) Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.;
Sorba, G.; Genazzani, A. A. Med. Res. Rev. 2008, 28, 278.
(3) Agalawe, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J.
2011, 6, 2696.
(4) Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1388.
(5) Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39,
1251.
(34) 1-Phenyl-3-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]but-
3-en-1-ol (18); Typical Procedure: In a vial suitable for
MW reactions, azidoallylsilane 2 (100 mg, 0.59 mmol) was
dissolved in anhydrous MeCN (2 mL) and phenylacetylene
(60 mg, 0.6 mmol) was added, followed by CuI (10 mg, 0.05
mol). The vial was closed and inserted in a MW oven
(Discover from CEM) and heated to 120 °C for 15 min (max
power 200 W, max internal pressure 200 psi). The vial was
cooled to 0 °C and anhydrous benzaldehyde (60 mg, 0.56
mmol) dissolved in anhydrous MeCN (0.5 mL) was added
by using a syringe. BCl3 (1 M in toluene, 0.6 mL, 0.6 mmol)
was slowly added by using a syringe to the vial under
vigorous stirring. The mixture was stirred at r.t. for 6 h, and
then solid Na2CO3 (150 mg) was added followed by EtOAc
(5 mL). The mixture was stirred at r.t. for 10 min then water
(2 mL) was added. The organic layer was separated, washed
with 1 M aq Na2CO3 (3 mL), 1 M aq NH4Cl (3 mL) and brine
(3 mL). The organic layer was separated, dried over
anhydrous Na2SO4, filtered and the solvent evaporated.
Compound 18 (135 mg, 75%) was isolated as a waxy
material by flash chromatography (hexane–EtOAc, 2:1). 1H
NMR (400 MHz, CDCl3): δ = 7.80 (d, J = 8.1 Hz, 2 H), 7.72
(s, 1 H,), 7.46–7.21 (m, 8 H), 5.15 (s, 1 H), 5.08–4.90 (m,
3 H,), 4.87 (dd, J = 8.4, 4.3 Hz, 1 H), 2.67 (br s, 1 H, OH),
2.42 (dd, J = 19.5, 6.4 Hz, 2 H). 13C NMR (100 MHz,
CDCl3): δ = 147.9, 143.8, 140.6, 128.8 (2C), 128.2 (2C),
127.8 (2C), 125.7 (4C), 120.0 (2C), 117.6, 72.9, 55.3, 43.1.
HRMS (ESI): m/z [M + Na]+ calcd for C19H19N3ONa+:
328.1426; found: 328.1424.
(6) Meldal, M.; Tomøe, C. W. Chem. Rev. 2008, 108, 2952.
(7) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941.
(8) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
(9) Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.;
Vyazankin, N. S. Tetrahedron 1988, 44, 2675.
(10) Schneider, M. R.; Mann, A.; Taddei, M. Tetrahedron Lett.
1996, 8493.
(11) D’Aniello, F.; Taddei, M. J. Org. Chem. 1992, 57, 5247.
(12) Balducci, E.; Bellucci, L.; Petricci, E.; Taddei, M.; Tafi, A.
J. Org. Chem. 2009, 74, 1314.
(13) Searching for the structure of 2 on SciFinder (December
2012) gave no hits. However, the product is described as an
intermediate for the synthesis of 4-amino-2-
(trimethylsilylmethyl)but-1-ene, see: Furman, B.; Dziedzic,
M. Tetrahedron Lett. 2003, 44, 8249.
(14) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
(15) Bräse, S.; Gil, C.; Knepper, K.; Zimmerman, V. Angew.
Chem. Int. Ed. 2005, 44, 5188.
(16) Huisgen, R.; Szeimies, G.; Mobius, L. Chem. Ber. 1966, 99,
475.
(17) Broeckx, W.; Overbergh, N.; Samyn, C.; Smets, G.; L‘Abbé,
G. Tetrahedron 1971, 27, 3527.
(18) Sha, C.-K.; Ouyang, S.-L.; Hsieh, D.-Y.; Chang, R.-C.;
Chang, S.-C. J. Org. Chem. 1986, 51, 1490.
(19) Mahoney, J. M.; Smith, C. R.; Johnston, J. N. J. Am. Chem.
Soc. 2005, 127, 1354.
(20) Chen, M.; Gan, Y.; Harwood, L. M. Synlett 2008, 2119.
(21) Belei, D.; Bicu, E.; Jones, P. G.; Birsa, M. L. J. Heterocycl.
Chem. 2011, 48, 129.
(35) Pizzetti, M.; Russo, A.; Petricci, E. Chem. Eur. J. 2011, 17,
4523.
(22) Dahl, R. S.; Finney, N. S. J. Am. Chem. Soc. 2004, 126,
8356.
(23) Allemann, S.; Vogel, P. Synthesis 1991, 923.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 491–495