1150
A. Scribner et al. / European Journal of Medicinal Chemistry 43 (2008) 1123e1151
and heated to 110 ꢂC for 6 h. The reaction mixture with enone
65 was concentrated under reduced pressured, and then carried
onto the next step without further purification. 1H NMR
(400 MHz, CDCl3) d 2.48 (bs, 3H), 3.07 (bs, 3H), 5.10 (d,
J ¼ 12.4 Hz, 1H), 6.93 (dd, J ¼ 7.5, 2.2 Hz, 1H), 7.14 (t,
J ¼ 8.7 Hz, 2H), 7.64 (d, J ¼ 12.4 Hz, 1H), 7.65 (d,
J ¼ 2.2 Hz, 1H), 7.65e7.73 (m, 2H), 9.59 (d, J ¼ 7.5 Hz,
1H). MS (ESIþ) 343.8.
D. Thompson, J. Mathew, A. Misura, S. Samaras, T. Tamas, J.F. Sina,
K.A. McNulty, C.G. McKnight, D.M. Schmatz, M. Wyvratt, Synthesis
and SAR studies of very potent imidazopyridine antiprotozoal agents,
Bioorg. Med. Chem. Lett. 16 (2006) 2479;
(b) D. Feng, M. Fisher, G.-B. Liang, X. Qian, C. Brown, A. Gurnett,
P.S. Leavitt, P.A. Liberator, J. Mathew, A. Misura, S. Samaras,
T. Tamas, D.M. Schmatz, M. Wyvratt, T. Biftu, Synthesis and SAR of
2-(4-fluorophenyl)-3-pyrimidin-4-ylimidazo[1,2-a]pyridine derivatives
as anticoccidial agents, Bioorg. Med. Chem. Lett. 16 (2006) 5978.
[5] A. Scribner, R. Dennis, J. Hong, S. Lee, D. McIntyre, D. Perrey, D. Feng,
M. Fisher, M. Wyvratt, P. Leavitt, P. Liberator, A. Gurnett, C. Brown,
J. Mathew, D. Thompson, D. Schmatz, T. Biftu, Synthesis and biological
activity of imidazopyridine anticoccidial agents: part I, Eur, J. Med.
Chem. 42 (11e12) (2007) 1334.
4.1.63. 4-[7-Chloro-2-(4-fluorophenyl)imidazo[1,2-a]-
pyridin-3-yl]pyrimidin-2-ylamine (66)
The reaction mixture described above with enone 65 (theo-
retically 357 mg, 1.04 mmol) in DMF (5.0 mL and DMFDMA
(1.38 g, 10.4 mmol) was charged with guanidine hydrochlo-
ride (496 mg, 5.19 mmol) and K2CO3 (717 mg, 5.20 mmol).
The reaction was heated to 110 ꢂC for 12 h, and was then chro-
matographed on SiO2 using a heptane/EtOAc gradient. Yield
[6] E. Diez-Barra, J.C. Garcia-Martinez, S. Merino, R. del Ray,
J. Rodriguez-Lopez, P. Sanchez-Verdu, J. Tejeda, Synthesis, characteriza-
tion, and optical response of dipolar and non-dipolar poly(phenylenevi-
nylene) dendrimers, J. Org. Chem. 66 (2001) 5664.
[7] A.F. Abdel-Magid, K.G. Carson, B.D. Harris, C.A. Maryanoff,
R.D. Shah, Reductive amination of aldehydes and ketones with sodium
triacetoxyborohydride. Studies on direct and indirect reductive amination
procedures, J. Org. Chem. 61 (1996) 3849.
1
of 66: 147 mg (41% over two steps). H NMR (400 MHz,
CDCl3) d 5.12 (bs, 2H), 6.53 (d, J ¼ 5.3 Hz, 1H), 6.92 (dd,
J ¼ 7.5, 1.9 Hz, 1H), 7.14 (t, J ¼ 8.7 Hz, 2H), 7.60e7.68 (m,
2H), 7.69 (d, J ¼ 1.9 Hz, 1H), 8.15 (d, J ¼ 5.3 Hz, 1H), 9.48
(d, J ¼ 7.5 Hz, 1H). MS (ESIþ) 339.8.
[8] A. Coelho, E. Sotelo, I. Estevez, E. Ravina, Pyridazines part XXIII: ef-
ficient arylation at position 5 of the 6-phenyl-(2H )-pyridazin-3-one sys-
tem using a Suzuki cross-coupling reaction, Synthesis (2001) 871.
[9] J.H. Hall, M. Gisler, A simple method for converting nitriles to amides.
Hydrolysis with potassium hydroxide in tert-butyl alcohol, J. Org. Chem.
41 (1976) 3769.
[10] W.J. Guilford, K.J. Shaw, J.L. Dallas, S. Koovakkat, W. Lee, A. Liang,
D.R. Light, M.A. McCarrick, M. Whitlow, B. Ye, M.M. Morrissey, Syn-
thesis, characterization, and structureeactivity relationships of amidine-
substituted (bis)benzylidine-cycloketone olefin isomers as potent and
selective factor Xa inhibitors, J. Med. Chem. 42 (1999) 5415.
[11] S.L. Colletti, J.L. Frie, E.C. Dixon, S.B. Singh, B.K. Choi, G. Scapin,
C.E. Fitzgerald, S. Kumar, E.A. Nichols, S.J. O’Keefe, E.A. O’Neill,
G. Porter, K. Samuel, D.M. Schmatz, C.D. Schwartz, W.L. Shoop,
C.M. Thompson, J.E. Thompson, R. Wang, A. Woods, D.M. Zaller,
J.B. Doherty, Hybrid-designed inhibitors of p38 MAP kinase utilizing
N-arylpyridazinones, J. Med. Chem. 46 (2003) 349.
4.1.64. 4-[2-(4-Fluorophenyl)-7-(4-methylpiperazin-1-yl)-
imidazo[1,2-a]pyridin-3-yl]pyrimidin-2-ylamine (67)
Nitrogen was bubbled through a solution of imidazopyri-
dine 66 (62 mg, 0.18 mmol) in N-methylpiperazine (6.0 mL).
After 10 min, 2-(di-tert-butylphosphino)biphenyl (8.0 mg,
0.027 mmol), sodium tert-butoxide (26 mg, 0.27 mmol) and
palladium(II) acetate (4.0 mg, 0.018 mmol) were sequentially
added, and the reaction was heated to 100 ꢂC under nitrogen
for 12 h. The reaction was then concentrated under reduced
pressure, and chromatographed on SiO2 using a gradient that
started with CH2Cl2 and ended with 90:9:1 CH2Cl2:MeOH:-
[12] J.M. Williams, R.B. Jobson, N. Yasunda, G. Marchesini, U.-H. Dolling,
E.J.J. Grabowski, A new general method for preparation of N-methoxy-
N-methylamides. Application in direct conversion of an ester to a ketone,
Tetrahedron Lett. 36 (1995) 5461.
1
concentrated NH4OH. Yield of 67: 43 mg (58%). H NMR
(400 MHz, CDCl3) d 2.38 (s, 3H), 2.60 (t, J ¼ 4.8 Hz, 4H),
3.35 (t, J ¼ 4.8 Hz, 4H), 5.01 (bs, 2H), 6.49 (d, J ¼ 5.5 Hz,
1H), 6.70 (dd, J ¼ 7.8, 2.7 Hz, 1H), 6.87 (bs, 1H), 7.12 (t,
J ¼ 8.8 Hz, 2H), 7.60e7.68 (m, 2H), 8.05 (d, J ¼ 5.5 Hz,
1H), 9.41 (d, J ¼ 7.8 Hz, 1H). MS (ESIþ) 404.2.
[13] J.A. Montgomery, A.T. Shortnacy, J.A. Secrist III, Synthesis and biolog-
ical evaluation of 2-fluoro-8-azaadenosine and related compounds, J.
Med. Chem. 26 (1983) 1483.
[14] S.L. Graham, T.H. Scholz, A new mode of reactivity of N-methoxy-N-meth-
ylamides with strongly basic reagents, Tetrahedron Lett. 31 (1990) 6269.
[15] (a) F.N.H. Chang, J.F. Oneto, P.P.T. Sah, B.M. Tolbert, H. Rapoport, The
synthesis of codeine labeled in the 3-methoxy group with C14, J. Org.
Chem. 15 (1950) 634;
References
(b) S.M. Sami, R.T. Dorr, A.M. Solyom, D.S. Alberts, B.S. Iyengar,
W.A. Remers, 6- and 7-Substituted 2-[20-(dimethylamino)ethyl]-1,2-di-
hydro-3H-dibenz[de,h]isoquinoline-1,3-diones: synthesis, nucleophilic
displacements, antitumor activity, and quantitative structureeactivity
relationships, J. Med. Chem. 39 (1996) 1609.
[1] R.B. Williams, A compartmentalized model for the estimation of the cost
of coccidiosis to the world’s chicken production industry, Int. J. Parasitol.
29 (1999) 1209.
[2] R.G.K. Donald, J. Allocco, S.B. Singh, B. Nare, S.P. Salowe, J. Wiltsie,
P.A. Liberator, Toxoplasma gondii cyclic GMP-dependent kinase: che-
motherapeutic targeting of an essential parasite protein kinase, Eukaryot.
Cell 1 (2002) 317.
[16] R. Freudenmann, B. Behnisch, M. Hannack, Synthesis of conjugated-
bridged triphenylenes and applications in OLEDs, J. Mater. Chem. 11
(2001) 1618.
[17] M. Mathe-Allainmat, M. Le Gall, C. Jellimann, J. Andrieux,
M. Langlois, Synthesis of b-substituted naphth-1-ylethylamido deriva-
tives as new melatoninergic agonists, Bioorg. Med. Chem. 7 (1999) 2945.
[18] W. Grell, R. Hurnaus, G. Griss, R. Sauter, E. Rupprecht, M. Mark,
P. Luger, H. Nar, H. Wittneben, P. Muller, Repaglinide and related hypo-
glycemic benzoic acid derivatives, J. Med. Chem. 41 (1998) 5219.
[19] I. Erdelmeier, C. Tailhan-Lomont, J.C. Yadan, Copper(I)-assisted mild
and convenient synthesis of new SeeN heterocycles: access to a promis-
ing class of GPx mimics, J. Org. Chem. 65 (2000) 8152.
[3] A.M. Gurnett, P.A. Liberator, P.M. Dulski, S.P. Salowe, R.G.K. Donald,
J.W. Anderson, J. Wiltsie, C.A. Diaz, G. Harris, B. Chang, S.J. Darkin-
Rattray, B. Nare, T. Crumley, P.S. Blum, A.S. Misura, T. Tamas,
M.K. Sardana, J. Yuan, T. Biftu, D.M. Schmatz, Purification and molec-
ular characterization of cGMP-dependent protein kinase from apicom-
plexan parasites: a novel chemotherapeutic target, J. Biol. Chem. 277
(2002) 15913.
[4] (a) T. Biftu, D. Feng, M. Fisher, G.-B. Liang, X. Qian, A. Scribner,
R. Dennis, S. Lee, P.A. Liberator, C. Brown, A. Gurnett, P.S. Leavitt,