reactions have been reported recently,5 the development of
new approaches in C-C bond formation with multiple
stereogenic centers6 in a cascade manner remains a challenge
at the forefront of synthetic chemistry.
nocatalysts in asymmetric Michael reactions,10 Henry reac-
tions,11 and tandem Michael-Henry reactions (Scheme 1, n
The Michael reaction is widely recognized as one of the
most important C-C bond formation processes in organic
chemistry as it is a versatile tool to assemble highly
functionalized carbon skeletons.7 One of the challenges of
such transformation lies in the ability of the catalyst to impart
both high enantioselectivity and diastereoselectivity during
the formation of the quaternary and tertiary stereocenters in
a sterically hindered environment. The Henry reaction is
another powerful C-C bond-forming tool that transforms
nitro alcohol (nitroaldol) products into a number of nitrogen
and oxygen-containing derivatives such as nitroalkenes,
amino alcohols, and amino acids.8 In addition to substrate-
controlled stereospecific nitroaldol reactions, the use of
organocatalysts to provide good stereoselectivities has been
developed in recent years.9 However, to the best of our
knowledge, there is no report describing the formation of
two quaternary centers in the asymmetric synthesis of
cyclopentanes as well as the possibility of using the domino
Michael-Henry reaction strategy for the synthesis of mul-
tisubstituted chiral cyclopentanes with good results. In this
paper, we disclose a facile organocatalytic enantioselective
domino Michael-Henry reaction to afford highly function-
alized cyclopentane derivatives with four stereogenic centers
(two quaternary and two tertiary stereocenters) in complete
diastereoselectivities and excellent enantioselectivities (88-
96% ee).
Scheme 1. Organocatalytic Synthesis of Cycloalkanes Using
Tandem Michael-Henry Reactions Strategy
) 1).12 These results prompted us to explore the feasibility
of employing diamine catalyst I13 to catalyze tandem
Michael-Henry reactions involving a nitroolefin and a
rationally designed carbon nucleophiles 1a to form chiral
cyclopentanes (Scheme 1, n ) 0). To our disappointment,
the enantioselectivity of the desired product was only 67%
ee (Table 1, entry 1). Despite changing the reaction condi-
tions such as catalysts, solvents, and temperature, the highest
enantiomeric excess obtained was 82% (Table 1, entries
1-4). In our bid to get better results, we turned our attention
to designed substrates. The investigation of various substrates
demonstrated that the domino Michael-Henry reaction
proceeded smoothly to afford the desired cyclopentane ring
products in high yields (92-95%, Table 1, entries 5, 7-9)
with the exception of the less reactive substrate 1c (Table 1,
entry 6). Surprisingly, only one diastereomer was obtained
in all of the cases investigated. However, varied enantiose-
lectivities were observed with different substituents on 1.
For example, higher enantiomeric excesses (75% ee) were
observed when 1a was substituted with 1d or 1e.
Readily accessible cinchona alkaloid and derivatives
catalysts which were developed recently in several research
groups have been identified as efficient bifunctional orga-
Despite many attempts, the best result achieved was only
83% ee with catalyst II. Therefore, it seemed essential to
change the organocatalysts for much higher enantioselec-
tivity. To our delight, the product was obtained in 93% yield
with 90% ee (Table 1, entry 13) when catalyst I was used.
(5) For a review of tandem reactions, see: Enders, D.; Grondal, C.; Hu¨ttl,
M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. For selected examples of
tandem reactions, see: (a) Li, H; Zhang, Y.; Vogel, P.; Sinay, P.; Bleriot,
Y Chem. Commun. 2007, 183. (b) Zhong, G.; Yu, Y. Org. Lett. 2004, 6,
1637. (c) Zhong, G. Chem. Commun. 2004, 626. (d) Dudding, T.; Hafez,
A. M.; Taggi, A. E.; Wagerle, T. R.; Lectka, T. Org. Lett. 2002, 4, 387. (e)
Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III Angew. Chem., Int.
Ed. 2003, 42, 4233. (f) Yamamoto, Y.; Momiyama, N.; Yamamoto, H.
J. Am. Chem. Soc. 2004, 126, 5962. (g) Marigo, M.; Schulte, T.; Franzen,
J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710. (h) Yang, J. W.;
Hechavarria, M.; Fonseca, T.; List, B. J. Am. Chem. Soc. 2005, 127, 15036.
(i) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2005, 127, 15051. (j) Brandau, S.; Maerten, E.; Jørgensen, K. A.
J. Am. Chem. Soc. 2006, 128, 14986. (k) Vicario, J. L.; Reboredo, S.; Bad´ıa,
D.; Carrillo, L. Angew. Chem., Int. Ed. 2007, 46, 5168. (l) Aroyan, C. E.;
Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256. (m) Reyes, E.; Jiang, H.;
Milelli, A.; Elsner, P.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2007, 46, 9202. (n) Cabrera, S.; Alema´n, J.; Bolze, P.; Bertelsen, S.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2008, 47, 121.
(10) For developments and applications of cinchona-derived bifunctional
catalysts, see: (a) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.;
Deng, L. Acc. Chem. Res. 2004, 37, 621. (b) Ye, J.; Dixon, D. J.; Hynes,
P. S. Chem. Commun. 2005, 4481. (c) Vakulya, B.; Varga, S.; Csa´mpai,
A.; Soo´s, T. Org. Lett. 2005, 7, 1967. (d) Tillman, A. L.; Ye, J.; Dixon,
D. J. Chem. Commun. 2006, 1191. (e) Mattson, A. E.; Zuhl, A. M.;
Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932. (f)
McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367. (g)
France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.; Lectka,
T. J. Am. Chem. Soc. 2005, 127, 1206. (h) Taggi, A. E.; Hafez, A. M.;
Wack, H.; Young, B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000,
122, 7831.
(6) (a) Enders, D.; Hu¨ttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006,
441, 861. (b) Enders, D.; Hu¨ttl, M. R. M.; Runsink, J.; Raabe, G.; Wendt,
B. Angew. Chem., Int. Ed. 2007, 46, 467. (c) Halland, N.; Aburel, P. S.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 1272. (d) Marigo, M.;
Bertelsen, S.; Landa, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128,
5475. (e) Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem.,
Int. Ed. 2007, 46, 4922. (f) Cao, C.-L.; Sun, X.-L.; Kang, Y.-B.; Tang, Y.
Org. Lett. 2007, 9, 4151.
(11) (a) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929. (b) Li, H.; Wang, B.;
Deng, L. J. Am. Chem. Soc. 2006, 128, 732.
(12) Tan, B.; Chua, P. J.; Li, Y.; Zhong, G. Org. Lett. 2008, 10, 2437.
The results of forming chiral cyclohexanes with excellent enantioselectivities
(97 to >99% ee) and high diastereoselectivities (93:7-99:1 dr) were
reported.
(13) For some papers related to using this type of catalyst, see: (a) Xie,
J.-W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y.-C.; Wu, Y.;
Zhu, J.; Deng, J.-G. Angew. Chem., Int. Ed. 2007, 46, 389. (b) Xie, J.-W.;
Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Org. Lett.
2007, 9, 413. (c) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri,
L.; Melchiorre, P. Org. Lett. 2007, 9, 1403. (d) McCooey, S. H.; Connon,
S. J. Org. Lett. 2007, 9, 599. (e) Zheng, B.-L.; Liu, Q.-Z.; Guo, C.-S.; Wang,
X.-L.; He, L. Org. Biomol. Chem. 2007, 5, 2913.
(7) For selected reviews regarding Michel addition reactions, see: (a)
Koichi, M.; Terada, M.; Hiroshi, M. Angew. Chem., Int. Ed. 2002, 41, 3554.
(b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. (d) Almasi, D.; Alonso,
D. A.; Na´jera, C. Tetrahedron: Asymmetry 2007, 18, 299.
(8) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
(9) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129,
12392.
3490
Org. Lett., Vol. 10, No. 16, 2008