ChemComm
Page 4 of 4
COMMUNICATION
DOI: 10.1039/C4CC05414H
2011, 1335; d) S. A. Snyder, D. S. Treitler and A. P. Brucks,
9
D. H. Miles, V. Marcos, and F. D. Toste, Chem. Sci. 2013, 4, 3427.
Aldrichimica Acta 2011, 44, 27. (e) U. Hennecke, Chem. Asian J. 10 M. Wilking, C. G. Daniliuc, and U. Hennecke, Synlett, 2014,
2012, 7, 456. (f) S. E. Denmark, W. E. Kuester and M. T. Burk,
Angew. Chem. Int. Ed. 2012, 51, 10938. (g) K. Murai and H.
doi:10.1055/sꢀ0034ꢀ1378278. In this letter, mechanistic aspect of
allene halogenation was not discusssed.
Fujioka, Heterocycles 2013, 87, 763. (h) C. K. Tan and Y.ꢀY. 11 Asymmetric semipinacol rearrangement of 2,3ꢀallenols with Br+, see:
Yeung, Chem. Commun. 2013, 49, 7985. (i) Y. A. Cheng, W.
Zongrong, and Y.ꢀY. Yeung, Org. Biomol. Chem. 2014, 12, 2333. 12 J. Barluenga, J. M. González, P. J. Campos, and G. Asensio, Angew.
(j) S. Zhenng, C. M. Schienebeck, W. Zhang, H.ꢀY. Wang, and W. Chem. Int. Ed. Engl. 1985 24 319.
Tang, Asian. J. Org. Chem. 2014, , 366. (k) J. M. J. Nolsøe, T. V. 13 The ꢀlactones formation with 4ꢀ(4ꢀ(tertꢀbutyl)ꢀ phenyl)hexaꢀ4,5ꢀ
Hansen, E. J. Org. Chem. 2014, 3051. dienoic acid (2m) resulted in 74% yield with 60:40 er.
For selected early efforts, see: (a) O. Kitagawa and T. Taguchi, 14 The significance of interraction between (DHQD)2PHAL and halogen
B. Guo, C. Fu, and S. Ma, Chem. Commun. 2014, 50, 4445.
,
,
3
γ
2
Synlett 1998, 1191. (b) S. H. Kang, S. B. Lee, and C. M. Park, J.
Am. Chem. Soc. 2003, 125, 15748. (c) A. Sakakura, A. Ukai, and K.
Ishihara, Nature 2007, 445, 900. (d) H. Y. Kwon, C. M. Park, S. B.
Lee, J. H. Youn, and S. H. Kang, Chem.—Eur. J. 2008, 14, 1023. (e)
D. C. Whitehead, R. Yousefi, A. Jaganathan, and B. Borhan, J. Am.
Chem. Soc. 2010, 132, 3298. (f) W. Zhang, S. Zheng, N. Liu, J. B.
sources have been proposed, see: ref 2e. Also see, (a) W. Zhang, N.
Liu, C. M. Schienebeck, X. Zhou, I. I. Izhar, I. A. Guzei, and W.
Tang, Chem. Sci. 2013, 4, 2652. (b) K. C. Nicolaou, N. L. Simmons,
Y. Ying, P. M. Heretsch, and J. S. Chen, J. Am. Chem. Soc. 2011,
134, 10389.
Werness, I. A. Guzei, and W. Tang, J. Am. Chem. Soc. 2010, 132
,
3664. (g) G. E. Veitch, and E. N. Jacobsen, Angew. Chem., Int. Ed.
2010, 49, 7332. (h) L. Zhou, C. K. Tan, X. Jiang, F. Chen, and Y.ꢀY.
Yeung, J. Am. Chem. Soc. 2010, 132, 15474. (i) K. Murai, T.
Matsushita, A. Nakamura, S. Fukushima, M. Shimura, and H.
Fujioka, Angew. Chem., Int. Ed. 2010, 49, 9174.
3
For recent examples, see: (a) H. Nakatsuji, Y. Sawamura, A.
Sakakura, and K. Ishihara, Angew. Chem., Int. Ed. 2014, 53, 6974.
(b) Q. Yin, S.ꢀL. You, Org. Lett. 2014, 16, 2426. (c) Z. Ke, C. K.
Tan, F. Chen, and Y.ꢀY. Yeung, J. Am. Chem. Soc. 2014, 136, 5627.
(d) L. Filippova, Y. Stenstrøn, T. V. Hansen, Tetrahedron Lett. 2014,
55, 419. (e) Y. Zhao, X. Jiang, and Y.ꢀY. Yeung, Angew. Chem., Int.
Ed. 2013, 52, 8597. (f) X. Zeng, C. Miao, S. Wang, C. Xia, and W.
Sun, Chem. Commun. 2013, 49, 2418. (g) R. Yousefi, K. D.
Ashtekar, D. C. Whitehead, J. E. Jackson, B. Borhan, J. Am. Chem.
Soc. 2013, 135, 14524. (h) Q. Yin, S.ꢀL. You, Org. Lett. 2013, 15
,
4266. (i) H. P. Shunatona, N. Frueh, Y.ꢀM. Wang, V. Rauniyar, and
F. D. Toste, Angew. Chem., Int. Ed. 2013, 52, 7724. (j) A.
Jaganathan, R. J. Staples, and B. Borhan, J. Am. Chem. Soc. 2013,
135, 14806. (k) D. Huang, X. Liu, L. Li, Y. Cai, W. Liu, and Y. Shi,
J. Am. Chem. Soc. 2013, 135, 8101. (l) A. Garzan, A. Jaganathan, N.
Salehi Marzijarani, R. Yousefi, D. C. Whitehead, J. E. Jackson, and
B. Borhan, Chem. Eur. J. 2013, 19, 9015. (m) F. Chen, C. K. Tan,
and Y.ꢀY. Yeung, J. Am. Chem. Soc. 2013, 135, 1232. (n) T. Arai, S.
Kajikawa, and E. Matsumura, Synlett 2013, 24, 2045. (o) Y.ꢀM.
Wang, J. Wu, C. Hoong, V. Rauniyar, and F. D. Toste, J. Am. Chem.
Soc. 2012, 134, 12928. (p) C. S. Brindle, C. S. Yeung, and E. N.
Jacobsen, Chem. Sci. 2013, 4, 2100. (q) J. E. Tungen, J. M. J.
Nolsoee, and T. V. Hansen, Org. Lett. 2012, 14, 5884. (r) D. H.
Paull, C. Fang, J. R. Donald, A. D. Pansick, and S. F. Martin, J. Am.
Chem. Soc. 2012, 134, 11128. (s) H. J. Lee, and D. Y. Kim,
Tetrahedron Lett. 2012, 53, 6984. (t) K. Ikeuchi, S. Ido, S.
Yoshimura, T. Asakawa, M. Inai, Y. Hamashima, and T. Kan, Org.
Lett. 2012, 14, 6016. (u) S. E. Denmark, and M. T. Burk, Org. Lett.
2012, 14, 256. (v) U. Hennecke, C. H. Muller, and R. Frohlich, Org.
Lett. 2011, 13, 860. (x) D. Huang, H. Wang, F. Xue, H. Guan, L. Li,
X. Peng, and Y. Shi, Org. Lett. 2011, 13, 6350.
4
(a) K. Murai, A. Nakamura, T. Matsushita, M. Shimura, H. Fujioka,
Chem. Eur. J. 2012, 18, 8448. (b) K. Murai, T. Matsushita, A.
Nakamura, N. Hyogo, J. Nakajima, and H. Fujioka, Org. Lett. 2013,
15, 2526.
5
6
M. Wilking, C. MueckꢀLichtenfeld, C. G. Daniliuc, and U.
Hennecke, J. Am. Chem. Soc. 2013, 135, 8133.
For selected reviews, see: (a) S. Ma, Acc. Chem. Res. 2009, 42, 1679.
(b) N. Krause, and C. Winter, Chem. Rev. 2011, 111, 1994. (c) F.
López, and J. L. Mascareñas, Chem. Eur. J. 2011, 17, 418. (d) S.
Yu, and S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074.
7
8
(a) X. Zhang, C. Fu, Y. Yu, S. Ma, Chem. Eur. J. 2012, 18, 13501.
(b) B. Lü, X. Jiang, C. Fu, and S. Ma, J. Org. Chem. 2009, 74, 438.
(c) X. Jiang, C. Fu, and S. Ma, Chem. Eur. J. 2008, 14, 9656.
Stereoselective halolactonization reactions of axially chiral allenoic
acids by chirality transfer approach have been reported. See, ref 6a
and 7, and references cited therein.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012