4112
X. Feng et al. / Tetrahedron Letters 49 (2008) 4110–4112
O
O
H
References and notes
InCl3
O
O
OH
O
InCl3
InCl3
R1
R1
1. Keay, B. A.; Dibble, P. W. In Comprehensive Heterocyclic Chemistry II; Katritzky,
R1
R2
R2
A. R., Rees, C. W., Eds.; Elsevier: Oxford, 1997; vol. 2, pp 395–436.
2. (a) Hou, X. L.; Cheung, T. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong,
H. N. C. Tetrahedron 1998, 54, 1955 and references cited therein; (b) Kirsch, S. F.
Org. Biomol. Chem. 2006, 4, 2076.
3. (a) Trost, B. M.; McIntosh, M. C. J. Am. Chem. Soc. 1995, 117, 7255; (b)
Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S.
Angew. Chem., Int. Ed. 2003, 42, 2681; (c) Ma, S.; Lu, L.; Zhang, J. J. Am. Chem. Soc.
2004, 126, 9645; (d) Sromek, A. W.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2004, 43, 2280; (e) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7,
3925; (f) Brown, R. D. Angew. Chem., Int. Ed. 2005, 44, 850; (g) Liu, Y.; Song, F.;
Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409; (h) Zhou, C.; Chan, P. W. H.;
Che, C. Org. Lett. 2006, 8, 325; (i) Ma, C.; Ding, H.; Zhang, Y.; Bian, M. Angew.
Chem., Int. Ed. 2006, 45, 7793.
R2
C
O
O
O
OH
- H+
H
+ H+
O
O
R1
InCl3
R1
R1
Cl2In
R2
R2
R2
Cl2In
D
O
O
O
- H+
+ H+
O
O
O
R1
R1
R1
H
H
R2
R2
R2
H
H
4. (a) Sanz, R.; Migue, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Org.
Lett. 2007, 9, 727; (b) Sanz, R.; Migue, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Org. Lett. 2007, 9, 2027.
Scheme 2. Possible mechanism for the furan formation.
5. (a) Lee, P. H.; Lee, K.; Kim, S. Org. Lett. 2001, 3, 3205; (b) Sakai, N.; Hirasawa, M.;
Konakahara, J. Tetrahedron Lett. 2003, 44, 4171; (c) Takami, K.; Mikami, S.;
Yorimitsu, H.; Shinorubo, H.; Oshima, K. J. Org. Chem. 2003, 68, 6627; (d) Ranu,
B.; Samanta, S. J. Org. Chem. 2003, 68, 7130; (e) Hayashi, N.; Shibata, I.; Baba, A.
Org. Lett. 2004, 6, 4981; (f) Takita, R.; Fukuto, Y.; Tsuji, R.; Ohshima, T.;
Shibasaki, M. Org. Lett. 2005, 7, 1363; (g) Hayashi, N.; Shibata, I.; Baba, A. Org.
Lett. 2005, 7, 3093; (h) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. . J. Am.
Chem. Soc. 2005, 127, 13760.
O
O
O
cat. InCl3
O
95%
chlorobenzene
Ph
110 o
C
Ph
nC6H13
nC6H13
6. For the use of Indium salts as Lewis acids, see: (a) Tsuchimoto, T.; Maeda, T.;
Shirakawa, E.; Kawakami, Y. Chem. Commun. 2000, 1573; (b) Loh, T.; Hu, Q.;
Tan, K.; Cheng, H. Org. Lett. 2001, 3, 2660; (c) Loh, T.; Chen, S. Org. Lett. 2002, 4,
3647; (d) Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A. J. Am. Chem. Soc. 2002, 124,
13690; (e) Tsuchimoto, T.; Hatanaka, K.; Shirakawa, E.; Kawakami, Y. Chem.
Commun. 2003, 2454; (f) Nakamura, M.; Endo, K.; Nakamura, E. J. Am. Chem. Soc.
2003, 125, 13002; (g) Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am. Chem.
Soc. 2004, 126, 7186; (h) Sakai, N.; Annaka, K.; Konakahara, T. Org. Lett. 2004, 6,
1527; (i) Nakamura, M.; Endo, K.; Nakamura, E. Org. Lett. 2005, 7, 3279; (j)
Chan, K.; Loh, T. Org. Lett. 2005, 7, 4491; (k) Miyanohana, Y.; Chatani, N. Org.
Lett. 2006, 8, 2155; (l) Zhang, Z.; Yin, L.; Wang, Y. Adv. Synth. Catal. 2006, 348,
184; (m) Cook, G. R.; Hayashi, R. Org. Lett. 2006, 8, 1045; (n) Sakai, N.; Annaka,
K.; Konakahara, T. Tetrahedron Lett. 2006, 47, 631.
7. (a) Furstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124,
13856; (b) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217; (c)
Pavan, C.; Legros, J.; Bolm, C. Adv. Synth. Catal. 2005, 347, 703.
8. During the submission of the manuscript, one referee alerted us to a recent
paper describing similar transformation catalyzed by a Ru-complex and TFA:
Cadierno, V.; Gimeno, J.; Nebra, N. Adv. Synth. Catal. 2007, 349, 382.
9. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793.
10. (a) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed.
2005, 44, 3913; (b) Kischel, J.; Mertins, K.; Michalik, D.; Zapf, A.; Beller, M. Adv.
Synth. Catal. 2007, 349, 865.
B
A
Scheme 3.
110 °C, the desired product A was isolated in 95% yield (Scheme 3).
This result firmly established the fact that furans were indeed pro-
duced through intermediate C and InCl3 did catalyze the cycliza-
tion process.
In summary, we have developed an efficient protocol for the
synthesis of tetrasubstituted furans from propargylic alcohols
and 1,3-dicarbonyl compounds. The success of the method de-
pended on the use of InCl3 as catalyst. Our reaction is relatively
favorable compared with the reported method in terms of both
the product yields and operational simplicity. Our method uses
only a catalytic amount of InCl3, requiring no stop in the middle
of the reaction and it also does not require the addition of stoichi-
ometric amount of base to effect the cyclization step. The proce-
dure that we developed not only extended the scope of
In-catalysis but also could be complementary to the existing
methods for the synthesis of furans. It could be easily adapted
for combinatory library synthesis. Detailed mechanistic investiga-
tion on this particular transformation is still ongoing.
11. Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825.
12. General procedure for the synthesis of furans via In-catalyzed propargylation of
1,3-dicarbonyl compounds-cyclization tandem process: Synthesis of 3-acetyl-5-n-
heptyl-2-methyl-4-phenylfuran (A). In
a 25-mL round-bottomed flask
equipped with reflux condenser were placed acetylacetone (300 mg,
a
3 mmol), 1-phenyl-2-nonyn-1-ol (216 mg, 1 mmol), 10 mol % InCl3 (22 mg,
0.1 mmol) and 5 mL of chlorobenzene. The mixture was heated to 110 °C for
20 h under N2 before it was cooled to room temperature. The mixture was
diluted with ether and quenched with saturated NH4Cl. The organic phase was
separated and the aqueous phase was extracted twice with ether. The organic
phases were combined, dried over MgSO4, and concentrated via vacua. The
crude product was purified through column chromatography (silica gel,
petroleum ether/ethyl acetate, 30/1) to afford 266 mg of the desired furan A
in 89% yield. 1H NMR (CDCl3, 400 MHz) d 0.85 (t, J = 6.8 Hz, 3H), 1.2–1.3 (m,
8H), 1.5–1.6 (m, 2H), 1.90 (s, 3H), 2.45 (t, J = 7.2 Hz, 2H), 2.54 (s, 3H), 7.24 (d,
J = 7.6 Hz, 2H), 7.3–7.45 (m, 3H); 13C NMR (CDCl3, 100 MHz) d 13.99, 14.25,
22.53, 25.69, 28.41, 28.80, 28.89, 30.65, 31.63, 120.57, 122.85, 127.28, 128.31
(2C), 129.93 (2C), 133.78, 151.04, 156.20, 196.06; IR: 1562, 1674, 2856,
2927 cmÀ1; LRMS (CI) for C20H26O2 [M+H]+ calcd 299, found 299.
Acknowledgments
We thank the financial support from 985 project. We also thank
Professor Qing-hong Li for technique assistance.
Supplementary data
Supplementary data associated with this article can be found, in
13. Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819.