4148 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 14
Laufer et al.
of p38a/b MAP kinases. Curr. Top. Med. Chem. (Sharjah, United Arab
Emirates) 2005, 5, 929–939.
The syntheses and analytical properties of compounds 1a-d,
2a-d, 3a-e, 4a,b, 5a-k, 6a,b, 7a-e, 8-10, 11a,b, 12a-c, 13a-c,
14a-c, 16b, 17a-d, 18a-d, 19a-d, 20a,b,and 32b have been
published elsewhere.31,36,41 The following commercial starting
materials were used: 15a,b and 16a.
(17) Zhang, J.; Shen, B.; Lin, A. Novel strategies for inhibition of the p38
MAPK pathway. Trends Pharmacol. Sci. 2007, 28, 286–295.
(18) Adams, J. L.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.; Webb, E. F.;
Hall, R.; Sorenson, M.; Lee, J. C.; Ayrton, A.; Griswold, D. E.;
Gallagher, T. F. Pyrimidinylimidazole inhibitors of CSBP/p38 kinase
demonstrating decreased inhibition of hepatic cytochrome P450
enzymes. Bioorg. Med. Chem. Lett. 1998, 8, 3111–3116.
(19) Testa, B.; Jenner, P. Inhibitors of cytochrome P-450s and their
mechanism of action. Drug Metab. ReV. 1981, 12, 1–117.
(20) Tang, C.; Chiba, M.; Nishime, J.; Hochman, J. H.; Chen, I. W.;
Williams, T. M.; Lin, J. H. Comparison of imidazole- and 2-methyl
imidazole-containing farnesyl-protein transferase inhibitors: interaction
with and metabolism by rat hepatic cytochrome p450s. Drug Metab.
Dispos. 2000, 28, 680–686.
Acknowledgment. This work was supported financially by
Merckle GmbH, Blaubeuren, Germany, and the Fonds der
Chemischen Industrie, Germany. We thank S. Linsenmaier, S.
Luik, C. Klein, M. Goettert,and K. Bauer for the assistance in
biological testing. We are also grateful to B. Kammerer and H.
Scheible for generating the LC/MS data and to C. Neusu¨ss for
the HRMS results.
(21) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam,
S. The protein kinase complement of the human genome. Science
(Washington, D.C.) 2002, 298, 1912–1916.
(22) Hopkins, A. L.; Groom, C. R. Opinion: The druggable genome. Nat.
ReV. Drug DiscoVery 2002, 1, 727–730.
Supporting Information Available: Synthetic procedures,
routine spectroscopic and HRMS data of all target compounds, and
(HP)LC and 13C NMR data. This material is available free of charge
(23) Keri, G.; Orfi, L.; Eros, D.; Hegymegi-Barakonyi, B.; Szantai-Kis,
C.; Horvath, Z.; Waczek, F.; Marosfalvi, J.; Szabadkai, I.; Pato, J.;
Greff, Z.; Hafenbradl, D.; Daub, H.; Muller, G.; Klebl, B.; Ullrich,
A. Signal transduction therapy with rationally designed kinase
inhibitors. Curr. Signal Transduction Ther. 2006, 1, 67–95.
(24) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How many drug
targets are there? Nat. ReV. Drug DiscoVery 2006, 5, 993–996.
(25) Toledo, L. M.; Lydon, N. B.; Elbaum, D. The structure-based design
of ATP-site directed protein kinase inhibitors. Curr. Med. Chem. 1999,
6, 775–805.
(26) Traxler, P.; Furet, P. Strategies toward the design of novel and selective
protein tyrosine kinase inhibitors. Pharmacol. Ther. 1999, 82, 195–206.
(27) Traxler, P. M. Protein tyrosine kinase inhibitors in cancer treatment.
Expert Opin. Ther. Pat. 1997, 7, 571–588.
References
(1) Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Protein kinase
inhibitors: insights into drug design from structure. Science (Wash-
ington, D.C.) 2004, 303 (5665), 1800–1805.
(2) Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu,
B.; Wright, A.; Vanderbilt, C.; Cobb, M. H. MAP kinases. Chem.
ReV. 2001, 101, 2449–2476.
(3) Schieven, G. L. The biology of p38 kinase: a central role in
inflammation. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates)
2005, 5, 921–928.
(4) Kumar, S.; Boehm, J.; Lee, J. C. p38 MAP kinases: key signalling
molecules as therapeutic targets for inflammatory diseases. Nat. ReV.
Drug DiscoVery 2003, 2, 717–726.
(5) Adams, J. L.; Badger, A. M.; Kumar, S.; Lee, J. C. p38 MAP kinase:
molecular target for the inhibition of pro-inflammatory cytokines. Prog.
Med. Chem. 2001, 38, 1–60.
(28) Traxler, P. Tyrosine kinase inhibitors in cancer treatment (part II).
Expert Opin. Ther. Pat. 1998, 8, 1599–1625.
(29) Sebolt-Leopold, J. S.; English, J. M. Mechanisms of drug inhibition
of signalling molecules. Nature 2006, 441, 457–462.
(30) Fabian, M. A.; Biggs, W. H.; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen,
P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld,
R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias,
J. M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.;
Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A small molecule-kinase
interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005,
23, 329–336.
(31) Laufer, S. A.; Hauser, D. R. J.; Liedtke, A. J. Regiospecific and highly
flexible synthesis of 1,4,5-trisubstituted 2-thioimidazoles from struc-
tural diverse ethanone precursors. Synthesis 2008, 2, 253–266.
(32) Clark, M. P.; Laughlin, S. K.; Laufersweiler, M. J.; Bookland, R. G.;
Brugel, T. A.; Golebiowski, A.; Sabat, M. P.; Townes, J. A.; VanRens,
J. C.; Djung, J. F.; Natchus, M. G.; De, B.; Hsieh, L. C.; Xu, S. C.;
Walter, R. L.; Mekel, M. J.; Heitmeyer, S. A.; Brown, K. K.; Juergens,
K.; Taiwo, Y. O.; Janusz, M. J. Development of orally bioavailable
bicyclic pyrazolones as inhibitors of tumor necrosis factor-alpha
production. J. Med. Chem. 2004, 47, 2724–2727.
(33) Laufer, S. A.; Zimmermann, W.; Ruff, K. J. Tetrasubstituted imidazole
inhibitors of cytokine release: probing substituents in the N-1 position.
J. Med. Chem. 2004, 47, 6311–6325.
(34) Laufer, S. A.; Striegel, H.; Wagner, G. K. Imidazole inhibitors of
cytokine release: probing substituents in the 2 position. J. Med. Chem.
2002, 45, 4695–4705.
(35) Peifer, C.; Wagner, G.; Laufer, S. New approaches to the treatment
of inflammatory disorders small molecule inhibitors of p38 MAP
kinase. Curr. Top. Med. Chem. 2006, 6, 113–149.
(6) Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J. T.; Blumenthal,
M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-Thompson, S. M.; Abt,
J. W.; Soreson, M. E.; Smietana, J. M.; Hall, R. F.; Garigipati, R. S.;
Bender, P. E.; Erhard, K. F.; Krog, A. J.; Hofmann, G. A.; Sheldrake,
P. L.; McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L.
Regulation of stress-induced cytokine production by pyridinylimidazoles;
inhibition of CSBP kinase. Bioorg. Med. Chem. 1997, 5, 49–64.
(7) Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon, D. A.;
Libby, B. E.; Nguyen, K. T.; Pitzenberger, S. M.; Selnick, H. G.;
Smith, G. R.; Tebben, A.; Vacca, J. P.; Varga, S. L.; Agarwal, L.;
Dancheck, K.; Forsyth, A. J.; Fletcher, D. S.; Frantz, B.; Hanlon,
W. A.; Harper, C. F.; Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.;
O’Neill, E. A.; Orevillo, C. J.; Pang, M.; Parsons, J.; Rolando, A.;
Sahly, Y.; Visco, D. M.; O’Keefe, S. J. Design and synthesis of potent,
selective, and orally bioavailable tetrasubstituted imidazole inhibitors
of p38 mitogen-activated protein kinase. J. Med. Chem. 1999, 42,
2180–2190.
(8) Wagner, G.; Laufer, S. Small molecular anti-cykotine agents. Med.
Res. ReV. 2006, 26, 1–62.
(9) Goldstein, D. M.; Gabriel, T. Pathway to the clinic: inhibition of P38
MAP kinase. A review of ten chemotypes selected for development.
Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2005, 5,
1017–1029.
(10) Fitzgerald, C. E.; Patel, S. B.; Becker, J. W.; Cameron, P. M.; Zaller,
D.; Pikounis, V. B.; O’Keefe, S. J.; Scapin, G. Structural basis for
p38a MAP kinase quinazolinone and pyridol-pyrimidine inhibitor
specificity. Nat. Struct. Biol. 2003, 10, 764–769.
(36) Laufer, S. A.; Wagner, G. K.; Kotschenreuther, D. A.; Albrecht, W.
Novel substituted pyridinyl imidazoles as potent anticytokine agents
with low activity against hepatic cytochrome P450 enzymes. J. Med.
Chem. 2003, 46, 3230–3244.
(11) Tong, L.; Pav, S.; White, D. M.; Rogers, S.; Crane, K. M.; Cywin,
C. L.; Brown, M. L.; Pargellis, C. A. A highly specific inhibitor of
human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol.
1997, 4, 311–316.
(37) Kammerer, B.; Scheible, H.; Albrecht, W.; Gleiter, C. H.; Laufer, S.
Pharmacokinetics of ML3403 ({4-[5-(4-fluorophenyl)-2-methylsulfa-
nyl-3H-imidazol-4-yl]-pyridin-2-yl}- (1-phenylethyl)-amine), a 4-py-
ridinylimidazole-type p38 mitogen-activated protein kinase inhibitor.
Drug Metab. Dispos. 2007, 35, 875–883.
(38) Kammerer, B.; Scheible, H.; Zurek, G.; Godejohann, M.; Zeller, K. P.;
Gleiter, C. H.; Albrecht, W.; Laufer, S. In vitro metabolite identification
of ML3403, a 4-pyridinylimidazole-type p38 MAP kinase inhibitor
by LC-Qq-TOF-MS and LC-SPE-cryo-NMR/MS. Xenobiotica 2007,
37, 280–297.
(12) Wilson, K. P.; McCaffrey, P. G.; Hsiao, K.; Pazhinisamy, S.; Galullo,
V.; Bemis, G. W.; Fitzgibbon, M. J.; Caron, P. R.; Murcko, M. A.;
Su, M. S. S. The structural basis for the specificity of pyridinylimi-
dazole inhibitors of p38 MAP kinase. Chem. Biol. 1997, 4, 423–431.
(13) Wang, Z.; Canagarajah, B. J.; Boehm, J. C.; Kassisa, S.; Cobb, M. H.;
Young, P. R.; bdel-Meguid, S.; Adams, J. L.; Goldsmith, E. J.
Structural basis of inhibitor selectivity in MAP kinases. Structure 1998,
6, 1117–1128.
(15) Dominguez, C.; Powers, D. A.; Tamayo, N. p38 MAP kinase
inhibitors: many are made, but few are chosen. Curr. Opin. Drug
DiscoVery DeV. 2005, 8, 421–430.
(39) Laufer, S.; Albrecht, W. ML3403sPharmacological characterization
of a potent p38 MAP kinase inhibitor. Inflammation Res. 2004, 53
(Suppl. 3), S215.
(16) Dambach, D. M. Potential adverse effects associated with inhibition