3376
G. W. Lamb et al. / Tetrahedron Letters 50 (2009) 3374–3377
Table 3
Table 4
Conversion of benzyl alcohol into benzylamine via amination and deprotection
Conversion of alcohols into primary amines via intermediate SES-protected amines
R
OH
Ph
OH
7
3
Ru cat
Ru cat
SES
deprotect
CsF
Ph
NH2
R
N
R
NH2
Ph
NHR
H2NR
H2NSES
10
13
H
12
9
11
8
Yield 9a (%)
Product 13
Yield 12a (%)
Yield 13b (%)
Entry
1
Intermediate 9
Yield 10b (%)
Entry
1
O2
S
86
74
Ph
NH2
Ph
Ph
N
H
84
92
87
71
0
86
Me
O2
S
2
3
4
5
89
71
81
95
81
72
75
72
78
67
p-MeOC6H4
p-ClC6H4
p-F3CC6H4
2-Naphth
NH2
N
H
2
3
4
5
45
74
90
—
OMe
NH2
O2
S
Ph
N
H
SiMe3
NH2
O
P
Ph
Ph
Ph
Ph
Ph
N
H
NH2
O
O
N
H
Ph
O
O
NH2
6
t-Bu
6
0
—
a
N
H
O
Isolated yield of the protected amine 12 (as the HCl salt). 2.5 mol % [Ru(p-
cymene)Cl2]2, 10 mol % PPh3, 10 mol % K2CO3, alcohol 3 (1 mmol), sulfonamide 11
(1 mmol), xylene, 150 °C, 24 h.
Isolated yield of primary amine 13 over the two-step, one-pot amination/
deprotection sequence. Crude alkylated sulfonamides reacted with CsF (10 mmol),
a
Isolated yield of the protected amine 9. 2.5 mol % [Ru(p-cymene)Cl2]2, 10 mol %
PPh3, 10 mol % K2CO3, alcohol 7 (1 mmol), sulfonamide or phosphinamide (1 mmol),
xylene, 150 °C, 24 h.
b
b
DMF, 110 °C, 48 h.
Isolated yield of benzylamine 10 (as its HCl salt) over the two-step, one-pot
amination/deprotection sequence. Crude protected amine reacted with; Mg
(20 mmol), MeOH, 80 °C, 24 h (entries 1 and 2). CsF (10 mmol), DMF, 110 °C, 48 h
(entry 3). MeCO2H/HCO2H/H2O (2:2:1), 80 °C, 24 h (entry 4).
Michalik, D.; Jackstell, R.; Beller, M. Chem. Asian J. 2007, 2, 403; (e) Naskar, S.;
Bhattacharjee, M. Tetrahedron Lett. 2007, 48, 3367; (f) da Costa, A. P.; Viciano,
M.; Sanau, M.; Merino, S.; Tejeda, J.; Peris, E.; Royo, B. Organometallics 2008, 27,
1305.
In summary, alcohols have been successfully converted into pri-
mary amines using ruthenium-catalysed borrowing hydrogen
methodology coupled with deprotection of a range of N-protected
intermediates.
4. (a) Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 725; (b) Hamid,
M. H. S. A.; Williams, J. M. J. Tetrahedron Lett. 2007, 48, 8263; (c) Hamid, M. H. S.
A.; Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766.
5. Gunanathan, C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 8661.
6. (a) Kocienski, P. J. Protecting Groups, 3rd ed.; Georg Thieme: Stuttgart, 2005; (b)
Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th
ed.; John Wiley and Sons: New York, 2006.
Acknowledgements
7. (a) Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry 1991, 2, 183; (b) Fujita, K.;
Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525.
We thank the EPSRC and GlaxoSmithKline for funding.
References and notes
8. Typical procedure for the alkylation of 1-phenylethylamine 4 with alcohols and
subsequent deprotection. To an oven-dried, nitrogen-purged carousel tube
containing [Ru(p-cymene)Cl2]2 (45.9 mg, 0.075 mmol) and DPEphos (80.8 mg,
0.150 mmol) were added primary alcohol (3 mmol), 1-phenylethylamine
(3 mmol) and anhydrous toluene (3 mL). The reaction mixture was then
heated to 110 °C for 24 h. The solvent was removed under vacuum, and the
alkylated amine was isolated by column chromatography (SiO2, EtOAc) or the
crude material was cleaved in situ. After cooling to room temperature, Pd/C
(10 wt %, 10% in Pd), EtOH (11 mL) and HCl (6 M, 1.1 mL) were added to the
solution. The carousel tube was then purged with H2 before heating to 65 °C for
14 h. The reaction mixture was cooled to room temperature, filtered to remove
Pd/C, and concentrated under vacuum to a solid, which was recrystallised from
by dissolving in minimal EtOH (approx. 2 mL) and addition of EtOAc (approx
20 mL).
1. For reviews on borrowing hydrogen methodology, see: (a) Hamid, M. H. S. A.;
Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555; (b) Guillena,
G.; Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358; (c) Lamb, G. W.;
Williams, J. M. J. Chim. Oggi 2008, 26, 17; (d) Nixon, T. D.; Whittlesey, M. K.;
Williams, J. M. J. Dalton Trans. 2009, 753.
2. (a) Fujita, K.; Li, Z.; Yamaguchi, R. Tetrahedron Lett. 2003, 44, 2687; (b) Fujita, K.;
Yamaguchi, R. Synlett 2005, 560; (c) Cami-Kobeci, G.; Williams, J. M. J. Chem.
Commun. 2004, 1072; (d) Cami-Kobeci, G.; Slatford, P. A.; Whittlesey, M. K.;
Williams, J. M. J. Bioorg. Med. Chem. Lett. 2005, 15, 535; (e) Gnanamgari, D.;
Sauer, E. L. O.; Schley, N. D.; Butler, C.; Incarvito, C. D.; Crabtree, R. H.
Organometallics 2009, 28, 321.
9. Bull, S. D.; Davies, S. G.; Fenton, G.; Mulvaney, A. W.; Prasad, R. S.; Smith, A. D. J.
Chem. Soc., Perkin Trans. 1 2000, 3765.
10. Very recently, Beller and co-workers have also reported a ruthenium-catalysed
N-alkylation of sulfonamides by alcohols: Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M.-
3. (a) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N. J. Chem. Soc.,
Chem. Commun. 1981, 611; (b) Watanabe, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; Ohta,
T. J. Org. Chem. 1984, 49, 3359; (c) Del Zotto, A.; Baratta, W.; Sandri, M.;
Verardo, G.; Rigo, P. Eur. J. Inorg. Chem. 2004, 524; (d) Hollmann, D.; Tillack, A.;