C O M M U N I C A T I O N S
the corresponding vinyl metal species formed from internal prop-
argylic alcohols (4) eliminates rapidly to form allene. We interpret
this difference as a manifestation of A1,3 strain as indicated in eq
1. Furthermore, substrates with weaker C-O bonds (e.g., benzylic
alcohols) suffer elimination even in the context of terminal alkynes
(see 3u).
In summary, we have identified two complementary sets of
conditions that generate allenes in high yield and with high
stereochemical purity. The method provides access to dialkyl-, aryl-
alkyl-, and diaryl-substituted allenes in excellent enantiomeric or
diastereomeric ratios. This approach provides direct and stereospe-
cific access to allenes from free propargylic alcohols and therefore
represents an attractive alternative to nonselective reductive methods
and substitution of propargylic esters.
Acknowledgment. We thank Donghui Zhang for key initial
experiments. Financial support was provided by NIGMS (R01-
GM074822) and the Welch Foundation.
Supporting Information Available: Complete experimental details
and characterization data for new compounds. Time-course experiments
related to racemization studies. This material is available free of charge
via the Internet (http://pubs.acs.org).
References
(1) (a) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 88,
402. (b) Negishi, E.; Takahashi, T. Synthesis 1988, 1. (c) Wipf, P.; Jahn,
H. Tetrahedron 1996, 52, 12853. (d) Lipshutz, B. H.; Pfeiffer, S. S.; Noson,
K.; Tomioka, T. In Titanium and Zirconium in Organic Synthesis; Marek,
I., Ed.; Wiley-VCH: Weinheim, 2002; Chapter 4. (e) Wipf, P.; Kendall, C.
Top. Organomet. Chem. 2005, 8, 1.
(2) Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97,
679.
(3) (a) Zhang, D. H.; Ready, J. M. J. Am. Chem. Soc. 2007, 129, 12088. (b)
Liu, X.; Ready, J. M. Tetrahedron 2008, 64, 6955.
(4) Branched vinyl zirconium species from oxidative addition to vinyl
halides: Takahashi, T.; Kotora, M.; Fischer, R.; Nishihara, Y.; Nakajima,
K. J. Am. Chem. Soc. 1995, 117, 11039.
(5) (a) Ohno, H.; Nagaoka, Y. Tomioka, K. In Modern Allene Chemistry, Vol.
1; Krause, N., Hashmi, S. K., Eds.; Wiley-VCH: Weinheim, 2004; Chapter
4. (b) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 795.
(6) Claesson, A.; Olsson, L.-I. J. Am. Chem. Soc. 1979, 101, 7302.
(7) (a) Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27,
5237. (b) Deutsch, C.; Lipshutz, B. H.; Krause, N. Angew. Chem., Int. Ed.
2007, 46, 1650. (c) Lo, V. K.-Y.; Wong, M.-K.; Che, C.-M. Org. Lett.
2008, 10, 517.
Figure 1. Synthesis of allenes from propargylic alcohols. aIsolated yields.
Allenes are drawn such that the original alkyne substituent (R2) is on the
right. See Supporting Information for experimental details. b1 equiv of
EtMgCl; 0.2 M in toluene; 1.1 equiv of Cp2ZrHCl. c0.5 equiv each of Et2Zn,
ZnCl2; 0.2 M in toluene/THF 30:1; 1.6 equiv of Cp2ZrHCl. dValues in
parentheses represent ee or dr of starting material.
Finally, we have used the hydrozirconation to prepare silyl-
substituted allenes (3i), allenes derived from tertiary alcohols (3v),
and terminal allenes (3u), although the latter showed some evidence
of polymerization under the reaction conditions.
(8) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
(9) (a) Clay, M. D.; Fallis, A. G. Angew. Chem., Int. Ed. 2005, 44, 4039. (b)
Regas, D.; Riz, J. M.; Afonso, M. M.; Palenzuela, J. A. J. Org. Chem.
2006, 71, 9153.
About half of our substrates were optically active11 and in every
case studied to date, the allenes were isolated with nearly the same
optical purity as the starting propargylic alcohols (Figure 1). The
absolute stereochemistry of the allenes was assigned based on
optical rotation.12 The conversion of central chirality to axial
chirality is consistent with a cis addition of Zr-H to the alkyne
followed by a syn elimination of Cp2ZrO (eq 1).13
(10) See Supporting Information for details.
(11) Synthesis of optically active substrates: (a) Gao, Y.; Klunder, J. M.; Hanson,
R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987,
109, 5765. (b) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 113,
6129. (c) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc.
2000, 122, 1806. (d) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M.
J. Am. Chem. Soc. 2005, 127, 13720.
(12) Optically active allenes 3k and 3s are known. Other simple allenes were
assigned according to: Lowe, G. Chem Commun. 1965, 411.
(13) Elimination of Cp2MO (M ) Zr, Ti) from allenes: (a) Yoshida, T.; Negishi,
E. J. Am. Chem. Soc. 1981, 103, 1276. (b) Buchwald, S. E.; Grubbs, R. H.
J. Am. Chem. Soc. 1983, 105, 5490. (c) Tucker, C. E.; Greve, B.; Klein,
W.; Knochel, P. Organometallics 1994, 13, 94. (d) Takahashi, R.; Hara,
R.; Huo, S.; Ura, Y.; Lesse, M. P.; Suzuki, N. Tetrahedron Lett. 1997, 38,
8723. (e) Petasis, N. A.; Hu, Y.-H. J. Org. Chem. 1997, 62, 782.
The difference in reactivity between terminal and internal
propargylic alcohols is noteworthy. Our previous study demon-
strated that the vinyl metal species derived from terminal propar-
gylic alcohols is sufficiently stable to be trapped with various
electrophiles (Scheme 1).3 In contrast, we demonstrate here that
JA8035527
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10875