C O M M U N I C A T I O N S
(8) For solution examples of anions interacting with electron-deficient arenes,
see: (a) Berryman, O. B.; Hof, F.; Hynes, M. J.; Johnson, D. W. Chem.
Commun. 2006, 506. (b) Gil-Ramirez, G.; Escudero, E. C.; Benet-Buchholz,
B.; Ballester, P. Angew. Chem., Int. Ed. 2008, 44, 4114. (c) See ref 7. (d)
Lakshminarayanan, P. S.; Ravikumar, I.; Suresh, E.; Ghosh, P. Inorg. Chem.
2007, 46, 4769. (e) Fairchild, R. M.; Holman, K. T. J. Am. Chem. Soc.
2005, 127, 16364. (f) Maeda, H.; Osuka, A.; Furuta, H. J. Inclusion Phenom.
Macrocycl. Chem. 2004, 49, 33. (g) Gorteau, V.; Bollot, G.; Mareda, J.;
Perez-Velasco, A.; Matile, S. J. Am. Chem. Soc. 2006, 128, 14788. (h)
Schneider, H. J.; Werner, F.; Blatter, T. J. Phys. Org. Chem. 1993, 6, 590.
(i) For a recent solid state example, see: Albrecht, M.; Wessel, C.; Groot,
M.; Rissanen, K.; Luchow, A. J. Am. Chem. Soc. 2008, 130, 4600.
(9) Job plots measured at concentrations lower than the dissociation constants
involved are inherently unreliable; see: Huang, C. Y.; Zhou, R.; Yang,
D. C. H.; Chock, P. B. Biophys. Chem. 2003, 100, 143. Unfortunately, this
system is limited to combined concentrations of ∼20 mM. However, fitting
the isotherms of all 16 titrations to higher order binding stoichiometries
resulted in Ka’s that were highly dependent on starting estimates.
Furthermore, these fits were not reproducible among experiments run in
duplicate or triplicate.
is critical to the binding mode adopted by the receptor. The 2,4- and
3,4-substitution patterns in 1 and 3 engender the interaction with anions
through aryl C-H· · ·X- hydrogen bonding, while the 3,5-substitution
pattern in 2 promotes weak σ interactions. With two NO2 and one
ester substituent, these highly electron-deficient arenes adopt binding
motifs of weak σ and aryl H-bonding instead of the anion-π motif.
The differences in binding modes between isomeric receptors 1 and 2
have allowed us to quantify for the first time distinction between aryl
H-bonds and anion/arene π contacts, which are in conflict when acidic
aryl hydrogens are present. Receptors 1 and 2 exhibit the strongest
interactions with Cl- followed by Br- and I-, and larger association
constants are observed when the halide is restricted to interact solely
through contacts to the π-system (receptor 2). Does this approach hint
at an emerging selectivity for anion binding in solution using electron-
deficient arenes? Receptors that exhibit larger binding constants with
more striking differences will need to be studied to further address
this issue.
(10) 1H NMR spectroscopy has been used previously to demonstrate C-H· · ·X-
hydrogen bonds in solution; see: (a) Li, Y.; Flood, A. H. Angew. Chem.,
Int. Ed. 2008, 47, 2649. (b) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.;
Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740. For other examples of
complementary C-H· · ·X- hydrogen bonding modes in receptors that bind
anions using traditional H-bonds (c-g) or electrostatic attractions (h,i), see:
(c) Lee, C.-H.; Na, H.-K.; Yoon, D.-W.; Won, D.-H.; Cho, W.-S.; Lynch,
V. M.; Shevchuk, S. V.; Sessler, J. L. J. Am. Chem. Soc. 2003, 125, 7301.
(d) Kwon, J. Y.; Jang, Y. J.; Kim, S. K.; Lee, K.-H.; Kim, J. S.; Yoon, J.
J. Org. Chem. 2004, 69, 5155. (e) Chen, Q.-Y.; Chen, C.-F. Tetrahedron
Lett. 2004, 45, 6493. (f) Ghosh, S.; Choudhury, A. R.; Row, T. N. G.;
Maitra, U. Org. Lett. 2005, 7, 1441. (g) Fujimoto, C.; Kusunose, Y.; Maeda,
H. J. Org. Chem. 2006, 71, 2389. (h) Wallace, K. J.; Belcher, W. J.; Turner,
D. R.; Syed, K. F.; Steed, J. W. J. Am. Chem. Soc. 2003, 125, 9699. (i)
Vega, I. E. D.; Gale, P. A.; Light, M. E.; Loeb, S. J. Chem. Commun.
2005, 4913.
Acknowledgment. O.B.B. acknowledges the NSF for an Integra-
tive Graduate Education and Research Traineeship (DGE-0549503).
J.S.M. recognizes the Ronald E. McNair Program for its support.
D.W.J. is a Cottrell Scholar of Research Corporation and gratefully
acknowledges the NSF for a CAREER award. Dr. Lev N. Zakharov
is acknowledged for assistance with the single-crystal X-ray diffraction
experiments. B.P.H. acknowledges support from the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of Basic
Energy Sciences, U.S. Department of Energy (DOE) under contract
number DE-AC05-00OR22725 with Oak Ridge National Laboratory
(managed by UT-Battelle, LLC). DFT calculations were performed
using the Molecular Science Computing Facility (MSCF) in the
William R. Wiley Environmental Molecular Sciences Laboratory, a
national scientific user facility sponsored by the DOE’s Office of
Biological and Environmental Research and located at Pacific North-
west National Laboratory managed for DOE by Battelle.
(11) Hennrich, G.; Anslyn, E. V. Chem.sEur. J. 2002, 8, 2218.
(12) Lee, J. C.; Choi, Y. Synth. Commun. 1998, 28, 2021.
j
(13) Crystal data for 1: C36H30N6O18, M ) 834.66, triclinic, P1, a ) 5.6949(12)
Å, b ) 19.833(4) Å, c ) 33.883(7) Å, R ) 84.106(4)°, ꢀ ) 85.278(5)°, γ
) 81.873(5)°, V ) 3759.6(14) Å3, Z ) 4, µ(Mo KR) ) 0.121 mm-1; R1
) 0.0566 (1321 parameters, 16401 reflections with I > 2σ(I)); R1 ) 0.1090,
wR2 ) 0.1446, GoF ) 1.007 for all 23621 data.
(14) Crystal data for 2: (C36H30N6O18)(C2H6OS)3, M ) 1069.04, monoclinic,
P2(1)/n, a ) 28.272(12) Å, b ) 5.075(2) Å, c ) 37.126(15) Å, ꢀ )
110.669(7)°, V ) 4984(4) Å3, Z ) 4, µ(Mo KR) ) 0.091 mm-1; R1 )
0.0857 (544 parameters, 8731 reflections with I > 2σ(I)); R1 ) 0.1736,
wR2 ) 0.2640, GoF ) 0.946 for all 33339 data.
(15) UV-vis titrations for 1 and 2 with NHep4+I- at 21 °C were performed to
corroborate the 1H NMR titrations herein. Regrettably, the charge transfer
band that grows in throughout the titration appears as a shoulder on the
residual NHep4+I- band that increases throughout the titration (see
Supporting Information).
Supporting Information Available: Full experimental details, includ-
ing synthesis, spectroscopic, titration, and structural details for all
compounds described; crystallographic data of 1 and 2 (CCDC #s
661394-661395); details of DFT calculations and relevant references are
available. This material is available free of charge via the Internet at http://
pubs.acs.org.
(16) Hirose, K. J. Inclusion Phenom. Macrocycl. Chem. 2001, 39, 193.
(17) Titrations of receptors 1 and 2 (∼5 mM) with tetra-n-butylammonium
bromide (NBu4+Br-) were performed at room temperature resulting in
lower association constants (averaging 4-6 M-1). These data indicate that
countercation and/or temperature plays a role in the anion binding ability
of this system. Nevertheless, titrations of receptor 1 at these concentrations
(∼5 mM) better illustrate the dramatic ∆δ for this receptor.
(18) Analogous titrations of 1 (2 mM) at 27 °C with NHep4+ halides also exhibit
striking peak movement (up to 0.632 ppm for NHep4+Cl-, 0.500 ppm for
NHep4+Br-, and 0.390 ppm for NHep4+I-) throughout the experiment
(Table 1 and Supporting Information).
References
(1) Berryman, O. B.; Bryantsev, V. S.; Stay, D. P.; Johnson, D. W.; Hay, B. P.
J. Am. Chem. Soc. 2007, 129, 48.
(2) Hay, B. P.; Bryantsev, V. S. Chem. Commun. 2008, 2417.
(3) Weak, reversible attractions between anions and electron-deficient arenes,
and putative structures for the different interaction types (including each
of the interactions A-D), have been reported. For representative examples,
see: (a) Buncel, E.; Norris, A. R.; Russell, K. E. Q. ReV. Chem. Soc. 1968,
22, 123. (b) Hiraoka, K.; Mizuse, S. J. Phys. Chem. 1987, 91, 5294. (c)
Kebarle, P.; Chowdhury, S. Chem. ReV. 1987, 87, 513. Recent computa-
tional studies have attracted considerable attention and have attempted to
characterize the interaction(s) in greater detail; see: (d) Alkorta, I.; Rozas,
I.; Elguero, J. J. Am. Chem. Soc. 2002, 124, 8593. (e) Mascal, M.;
Armstrong, A.; Bartberger, M. D. J. Am. Chem. Soc. 2002, 124, 6274. (f)
Quinonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa,
A.; Deya, P. M. Angew. Chem., Int. Ed. 2002, 41, 3389. For additional
recent reviews, see: (g) Gamez, P.; Mooibroek, T. J.; Teat, S. J.; Reedijk,
J. Acc. Chem. Res. 2007, 40, 435. (h) Schottel, B. L.; Chifotides, H. T.;
Dunbar, K. R. Chem. Soc. ReV. 2008, 37, 68.
(19) DFT calculations were performed with the NWCHEM program (a) using
the B3LYP functional (b-e) with the DZVP basis set and DGauss A1
coulomb fitting (f). (Optimized geometries and absolute energies for all
structures are provided as Supporting Information.) (a) Bylaska, W.;
NWChem, A Computational Chemistry Package for Parallel Computers,
version 5.0; Pacific Northwest National Laboratory: Richland, WA, 2006;
for a full author list, see Supporting Information. (b) Becke, A. D. Phys.
ReV. A 1988, 38, 3098. (c) Becke, A. D. In The Challenge of d and f
Electrons: Theory and Computation; Salahub, D. R., Zerner, M. C., Eds.;
ACS Symposium Series, No. 394; American Chemical Society: Washington,
DC, 1989; p 166. (d) Becke, A. D. Int. J. Quantum Chem. Symp. 1989, 23,
599. (e) Perdew, J. P. Phys. ReV. B 1986, 33, 8822. (f) Godbout, N.;
Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.
(20) Bryantsev, V. S.; Hay, B. P. Org. Lett. 2005, 7, 5031.
(21) Bryantsev, V. S.; Hay, B. P. J. Am. Chem. Soc. 2005, 127, 8282.
(22) An alternate conformation, 6.0 kcal/mol higher in energy, was located for
1 · Br-, where the Br- forms a weak σ complex (3.432 Å) with one arene
and bifurcated aryl H-bonds (2.832, 3.043, 2.909, and 3.021 Å) with the
other two (see Supporting Information). It is possible that the H-bond
complex and/or the weak σ structure is responsible for the colors observed
in solution when receptors 1 and 3 are mixed with Br- or I-.
(4) Bianchi, A., Bowman-James, K., Garcia-Espana, E., Eds. Supramolecular
Chemistry of Anions; Wiley-VCH: New York, 1997.
(5) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor Chemistry; The Royal
Society of Chemistry: Cambridge, UK, 2006.
(6) Sessler, J. L.; Gross, D. E.; Cho, W.-S.; Lynch, V. M.; Schmidtchen, F. P.;
Bates, G. W.; Light, M. E.; Gale, P. A. J. Am. Chem. Soc. 2006, 128,
12281.
(23) As a control, no color is observed when NHep4+Cl-, NHep4+Br- or
NHep4+I- are dissolved in C6D6 and heated to 27 °C.
(7) Rosokha, Y. S.; Lindeman, S. V.; Rosokha, S. V.; Kochi, J. K. Angew.
Chem., Int. Ed. 2004, 43, 4650.
JA8035652
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10897