Enantioselective a-Arylation of Cyclic Ketones
Ranganath, F. Glorius, Catal. Sci. Technol. 2011, 1, 13–
22.
Experimental Section
[5] a) H. M. R. Hoffmann, J. Frackenpohl, Eur. J. Org.
Chem. 2004, 4293–4312; b) K. Kacprzak, J. Gawronski,
Synthesis 2001, 961–998; c) A SciFinder search on
August 12th, 2011 resulted in 149 references where qui-
nine is used as a catalyst.
General Remarks
For detailed experimental procedures, spectral data and
characterization see the Supporting Information.
Typical Experimental Procedure for the a-Arylation
of Ketones with Aryl Halides
[6] a) S. Gou, X. Chen, Y. Xiong, X. Feng, J. Org. Chem.
2006, 71, 5732–5736; b) W. Wang, S. Gou, X. Liu, X.
Feng, Synlett 2007, 2875–2878; c) S. K. Tian, L. Deng, J.
Am. Chem. Soc. 2001, 123, 6195–6196; d) T. Ooi, K.
Maruoka, Acc. Chem. Res. 2004, 37, 526–533; e) H. Li,
Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004,
126, 9906–9907; f) D. Petterson, M. Marcolini, L. Ber-
nadi, F. Fini, R. P. Herrera, V. Sgarzani, A. Ricci, J.
Org. Chem. 2006, 71, 6269–6272; g) J.-W. Xie, L. Yue,
W. Chen, W. Du, J. Zhu, J.-G. Deng, Y.-C. Chen, Org.
Lett. 2007, 9, 413–415; h) D. H. Paull, C. J. Abraham,
M. T. Scerba, E. Alden-Danforth, T. Lectka, Acc.
Chem. Res. 2008, 41, 655–663.
[7] For a lead reference on chiral modifiers in asymmetric
catalysis, see: a) T. Mallat, E. Orglmeister, A. Baiker,
Chem. Rev. 2007, 107, 4863–4890. For an overview on
asymmetric heterogeneous catalysis, see: b) M. Heit-
baum, F. Glorius, I. Escher, Angew. Chem. 2006, 118,
4850–4881; Angew. Chem. Int. Ed. 2006, 45, 4732–4762.
[8] For the pioneering report, see: Y. Orito, S. Imai, S.
Niwa, G. H. Nguyen, J. Synth. Org. Chem. Jpn. 1979,
37, 173–174.
[9] a) W. He, P. Liu, B. L. Zhang, X. L. Sun, S. Y. Zhang,
Appl. Organomet. Chem. 2006, 20, 328–334; b) J. Shi,
M. Wang, L. He, K. Zheng, X. Liu, L. Lin, X. Feng,
Chem. Commun. 2009, 4711–4713; c) T. Kaczorowski, I.
Justyniak, T. Lipinska, J. Lipkowski, J. Lewinski, J. Am.
Chem. Soc. 2009, 131, 5393–5395; d) I. Tesarowicz, B.
Oleksyn, W. Nitek, Chirality 2007, 19, 152–161; e) V.
Rai, I. N. N. Namboothiri, Tetrahedron: Asymmetry
2008, 19, 767–772; f) T.-P. Loh, J.-R. Thou, Z. Yin, Org.
Lett. 1999, 11, 1855–1857; for an insighful review on the
use of the Cinchona alkaloid scaffold in catalysis, see:
g) L. Stegbauer, F. Sladojevich, D. J. Dixon, Chem. Sci.
2012, DOI: 10.1039/c1sc00416f.
An oven-dried Schlenk flask was charged with PdACTHNUTRGNEUNG(dba)2
(1.4 mol%), quinine (7.5 mol%) and NaO-t-Bu (2.0 equiv.).
Toluene (2 mL), the respective aryl halide (2 equiv.) and
ketone (1 equiv.) were added and the reaction mixture was
heated at 1008C. After completion of the reaction (moni-
tored by GC-MS), the reaction mixture was poured into sa-
turated aqueous NH4Cl (5 mL). The aqueous phase was ex-
tracted with CH2Cl2 (3ꢃ10 mL), the combined organic
phases were dried over MgSO4 and concentrated under
vacuum. Purification of the residue by flash column chroma-
tography provided the respective title compounds.
Acknowledgements
Generous financial support by Alexander von Humboldt
Foundation (KVSR) and the Deutsche Forschungsgemein-
schaft (SFB 858) is gratefully acknowledged. The research of
FG has been supported by the Alfried Krupp Prize for
Young University Teachers of the Alfried Krupp von Bohlen
und Halbach Foundation. We are grateful to Buchler GmbH
for a generous gift of Cinchona alkaloids.
References
[1] For a recent review, see: F. Bellina, R. Rossi, Chem.
Rev. 2010, 110, 1082–1146.
[2] Review on asymmetric a-arylation reactions, see:
a) C. C. C. Johansson, T. J. Colacot, Angew. Chem.
2010, 122, 686–718; Angew. Chem. Int. Ed. 2010, 49,
676–707; see also: b) D. A. Culkin, J. F. Hartwig, Acc.
Chem. Res. 2003, 36, 234–245; c) M. Miura, M.
Nomura, Top. Curr. Chem. 2002, 219, 211–241. For in-
tramolecular asymmetric a-arylations, see: d) S. Lee,
J. F. Hartwig, J. Org. Chem. 2001, 66, 3402–3415;
e) E. P. Kꢁndig, T. M. Seidel, Y.-X. Jia, G. Bernadinelli,
Angew. Chem. 2007, 119, 8636–8639; Angew. Chem.
Int. Ed. 2007, 46, 8484–8487; f) S. Wꢁrtz, C. Lohre, R.
Frçhlich, K. Bergander, F. Glorius, J. Am. Chem. Soc.
2009, 131, 8344–8345.
[10] a) H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless,
Chem. Rev. 1994, 94, 2483–2547; b) D. Nilov, O. Reiser,
Adv. Synth. Catal. 2002, 344, 1169–1173.
[11] R. Hubel, K. Polborn, W. Beck, Eur. J. Inorg. Chem.
1999, 471–482.
[12] H. Hiemstra, H. Wynberg, J. Am. Chem. Soc. 1981,
103, 417–430.
[13] U.-H. Dolling, P. Davis, E. J. J. Grabowski, J. Am.
Chem. Soc. 1984, 106, 446–447.
[14] a) W. A. Herrmann, Angew. Chem. 2002, 114, 1342–
1363; Angew. Chem. Int. Ed. 2002, 41, 1290–1309; b) N-
Heterocyclic Carbenes in Synthesis, (Ed.: S. P. Nolan),
Wiley-VCH, Weinheim, Germany, 2006; c) N-Heterocy-
clic Carbenes in Transition Metal Catalysis, (Ed.: F.
Glorius), Springer, Berlin, 2007; d) E. A. B. Kantchev,
C. J. OꢅBrien, M. G. Organ, Angew. Chem. 2007, 119,
2824–2870; Angew. Chem. Int. Ed. 2007, 46, 2768–2813;
e) S. Wꢁrtz, F. Glorius, Acc. Chem. Res. 2008, 41, 1523–
1533; f) S. Dꢆez-Gonzꢇlez, N. Marion, S. P. Nolan,
Chem. Rev. 2009, 109, 3612–3676; g) for a recent
[3] a) J. ꢄhman, J. P. Wolfe, M. V. Troutman, M. Palucki,
S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 1918–
1919; b) T. Hamada, A. Chieffi, J. ꢄhman, and S. L.
Buchwald J. Am. Chem. Soc. 2002, 124, 1261–1268;
c) G. Chen, F. Y. Kwong, H. On Chan, W. Y. Yu,
A. S. C. Chan, Chem. Commun. 2006, 1413–1415; d) X.
Liao, Z. Weng, J. F. Hartwig, J. Am. Chem. Soc. 2008,
130, 195–200.
[4] a) K. V. S. Ranganath, J. Kloesges, A. Schꢀfer, F. Glo-
rius, Angew. Chem. 2010, 122, 7952–7956; Angew.
Chem. Int. Ed. 2010, 49, 7786–7789; review: b) K. V. S.
Adv. Synth. Catal. 2012, 354, 377 – 382
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
381