10.1002/anie.201811338
Angewandte Chemie International Edition
COMMUNICATION
[5]
[6]
a) R. S. Givens, M. Rubina, J. Wirz, Photochem. Photobiol. Sci. 2012,
11, 472-488; b) S. Karthik, N. Puvvada, B. N. P. Kumar, S. Rajput, A.
Pathak, M. Mandal, N. D. P. Singh, ACS Appl. Mater. Interfaces 2013, 5,
5232-5238.
showed that the caged thiol-molecules, unlike their free
counterparts, display high membrane permeability. The
successful activation of Largazole in HCT-116 cells demonstrates
its potential as a drug delivery and activation method for cancer
therapy. Further investigation of the use of this strategy on
proteins could also be extremely useful for photo-controlled
protein activation and drug-release from antibody-drug
conjugates.
a) K. L. Ciesienski, K. J. Franz, Angew. Chem. Int. Ed. 2011, 50, 814-
824; b) D. Crespy, K. Landfester, U. S. Schubert, A. Schiller, Chem.
Commun. 2010, 46, 6651-6662.
[7]
[8]
[9]
T. Posner, Ber. Dtsch. Chem. Ges. 1905, 38, 646-657.
C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540-1573.
a) S. Staderini, A. Chambery, A. Marra, A. Dondoni, Tetrahedron Lett.
2012, 53, 702-704; b) Y. Tian, J. Li, H. Zhao, X. Zeng, D. Wang, Q. Liu,
X. Niu, X. Huang, N. Xu, Z. Li, Chem. Sci. 2016, 7, 3325-3330; c) M. Lo
Conte, S. Staderini, A. Marra, M. Sanchez-Navarro, B. G. Davis, A.
Dondoni, Chem. Commun. 2011, 47, 11086-11088; d) M. Lo Conte, S.
Pacifico, A. Chambery, A. Marra, A. Dondoni, J. Org. Chem. 2010, 75,
4644-4647; e) S. Kohling, M. P. Exner, S. Nojoumi, J. Schiller, N. Budisa,
J. Rademann, Angew. Chem. Int. Ed. 2016, 55, 15510-15514; f) X. F.
Gao, J. J. Du, Z. Liu, J. Guo, Org. Lett. 2016, 18, 1166-1169; g) G. J. L.
Bernardes, J. M. Chalker, J. C. Errey, B. G. Davis, J. Am. Chem. Soc.
2008, 130, 5052-5053.
Acknowledgements
Funded under the Royal Society (URF to G.J.L.B.), FCT Portugal
(iFCT to G.J.L.B.), ERC StG (grant agreement No. 676832), D.G.I.
MINECO/FEDER (CTQ2015-70524-R and RYC-2013-14706 to
G.J.O.), Cambridge Trust and China Scholarship Council (PhD
studentship to S.S.) and the EPSRC. The authors thank Vikki
Cantrill for her help with the preparation and editing of this
manuscript.
[10] a) A. B. Lowe, Polym. Chem. 2014, 5, 4820-4870; b) F. Jivan, R.
Yegappan, H. Pearce, J. K. Carrow, M. McShane, A. K. Gaharwar, D. L.
Alge, Biomacromolecules 2016, 17, 3516-3523; c) Y. Meng, C. R. Fenoli,
A. Aguirre-Soto, C. N. Bowman, M. Anthamatten, Adv. Mater. 2014, 26,
6497-6502; d) Y. Meng, M. Tsai, G. R. Schmidt, M. Anthamatten, ACS
Appl. Mater. Interfaces 2015, 7, 8601-8605; e) C. Wang, S. Chatani, M.
Podgórski, C. N. Bowman, Polym. Chem. 2015, 6, 3758-3763; f) J.-P.
Fouassier, F. Morlet-Savary, J. Lalevée, X. Allonas, C. Ley, Materials
2010, 3, 5130-5142; g) A. K. Fraser, C. S. Ki, C.-C. Lin, Macromol. Chem.
Phys. 2014, 215, 507-515.
Keywords: photoactivation • caged drugs • radical reaction •
thiol-ene • isobutylene
[1]
[2]
a) X. Ai, J. Mu, B. Xing, Theranostics 2016, 6, 2439-2457; b) E. J.
Grayson, G. J. L. Bernardes, J. M. Chalker, O. Boutureira, J. R. Koeppe,
B. G. Davis, Angew. Chem. Int. Ed. 2011, 50, 4127-4132.
a) N. C. Fan, F. Y. Cheng, J. A. A. Ho, C. S. Yeh, Angew. Chem. Int. Ed.
2012, 51, 8806-8810; b) M. Martinez-Carmona, A. Baeza, M. A.
Rodriguez-Milla, J. Garcia-Castro, M. Vallet-Regi, J. Mater. Chem. B
2015, 3, 5746-5752; c) X. L. Hu, J. Tian, T. Liu, G. Y. Zhang, S. Y. Liu,
Macromolecules 2013, 46, 6243-6256; d) M. M. Dcona, D. Mitra, R. W.
Goehe, D. A. Gewirtz, D. A. Lebman, M. C. T. Hartman, Chem. Commun.
2012, 48, 4755-4757; e) B. S. Howerton, D. K. Heidary, E. C. Glazer, J.
Am. Chem. Soc. 2012, 134, 8324-8327; f) Y. L. Dai, H. H. Xiao, J. H. Liu,
Q. H. Yuan, P. A. Ma, D. M. Yang, C. X. Li, Z. Y. Cheng, Z. Y. Hou, P. P.
Yang, J. Lin, J. Am. Chem. Soc. 2013, 135, 18920-18929.
[11] A. Dondoni, Angew. Chem. Int. Ed. 2008, 47, 8995-8997.
[12] a) T. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005,
308, 1615-1617; b) C. J. Kloxin, T. F. Scott, C. N. Bowman,
Macromolecules 2009, 42, 2551-2556; c) C. J. Kloxin, T. F. Scott, H. Y.
Park, C. N. Bowman, Adv. Mater. 2011, 23, 1977-1981; d) N. R.
Gandavarapu, M. A. Azagarsamy, K. S. Anseth, Adv. Mater. 2014, 26,
2521-2526; e) C. C. Lin, RSC Adv. 2015, 5, 39844-39853.
[13] S. Sun, I. Companon, N. Martinez-Saez, J. D. Seixas, O. Boutureira, F.
Corzana, G. J. L. Bernardes, ChemBioChem 2018, 19, 48-52.
[14] K. Taori, V. J. Paul, H. Luesch, J. Am. Chem. Soc. 2008, 130, 1806-1807.
[15] A. Bowers, N. West, J. Taunton, S. L. Schreiber, J. E. Bradner, R. M.
Williams, J. Am. Chem. Soc. 2008, 130, 11219-11222.
[3]
[4]
P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V.
Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191.
a) Patchorn.A, B. Amit, R. B. Woodward, J. Am. Chem. Soc. 1970, 92,
6333-6335; b) J. W. Walker, J. A. Mccray, G. P. Hess, Biochemistry 1986,
25, 1799-1805; c) P. K. Brown, A. T. Qureshi, A. N. Moll, D. J. Hayes, W.
T. Monroe, Acs Nano 2013, 7, 2948-2959.
[16] G. Poli, R. Di Fabio, L. Ferrante, V. Summa, M. Botta, ChemMedChem
2017, 12, 1917-1926.
This article is protected by copyright. All rights reserved.