Enamine Catalysis in the Synthesis of Analogues of gem-Bisphosphonates
[8]
S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975–2978.
For recent reviews on organocatalytic asymmetric conjugate
addition reactions see: a) O. M. Berner, L. Tedeschi, D. Enders,
Eur. J. Org. Chem. 2002, 12, 1877–1894; b) S. B. Tsogoeva, Eur.
J. Org. Chem. 2007, 11, 1701–1716; c) D. Almasi, D. A. Alonso,
C. Nájera, Tetrahedron: Asymmetry 2007, 18, 299–365; d) S.
Sulzer-Mossé, A. Alexakis, Chem. Commun. 2007, 3123–3135;
e) J. L. Vicario, D. Badía, L. Carrillo, Synthesis 2007, 14, 2065–
2092.
C. J. Chapman, C. G. Frost, Synthesis 2007, 1, 1–21.
S. Sulzer-Mossé, M. Tissot, A. Alexakis, Org. Lett. 2007, 9,
3749–3752.
M. Capuzzi, D. Perdicchia, K. A. Jørgensen, Chem. Eur. J.
2008, 14, 128–135.
Experimental Section
[9]
General Procedure for the Asymmetric Catalytic Michael Addition
Reaction: To vinyl gem-bisphosphonate (1.0 mmol) in dry dichloro-
methane (0.1 mL) was added the ketone (10.0 mmol), (S)-(+)-1-(2-
pyrrolidinylmethyl)pyrrolidine (0.1 mmol) and benzoic acid
(0.1 mmol). The solution was stirred at room temperature, under
argon, for the times specified. The reaction was then quenched with
a concentrated solution of ammonium chloride, and the products
[10]
extracted with dichloromethane. The extracts were dried with anhy-
[11]
drous sodium sulfate, and the solvent was evaporated by a rotary
evaporator to give the product, which was purified by column
chromatography on silica gel.
[12]
[13]
M. L. Lolli, L. Lazzarato, A. DiStilo, R. Fruttero, A. Gasco,
J. Organomet. Chem. 2002, 650, 77–83.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data for the new
compounds, selected NMR spectra and HPLC traces, are provided.
[14]
[15]
G. Sturtz, J. Guervenou, Synthesis 1991, 661–662.
R. A. Nugent, S. T. Schlachter, M. Murphy, C. J. Dunn, N. D.
Staite, N. A. Galinet, S. K. Shields, H. Wu, D. G. Aspar, K. A.
Richard, J. Med. Chem. 1994, 37, 4449–4454.
S. T. Schlachter, L. A. Galinet, S. K. Shields, D. G. Aspar, C. J.
Dunn, N. D. Staite, R. A. Nugent, Bioorg. Med. Chem. Lett.
1998, 8, 1093–1096.
C. R. Degenhardt, D. C. Burdsall, J. Org. Chem. 1986, 51,
3488–3490.
For a first report on the use of this compound as an organocat-
alyst see S. Saito, M. Nakadai, H. Yamamoto, Synlett 2001,
1245–1248.
Acknowledgments
[16]
A. M. Faísca Phillips thanks the Fundação para a Ciência e Tecno-
logia, MCTES (SFRH/BCC/15809/2206) for financial support.
[17]
[18]
[1] a) G. A. Rodan, Annu. Rev. Pharmacol. Toxicol. 1998, 38, 375–
388; b) G. A. Rodan, T. J. Martin, Science 2000, 289, 1508–
1514.
[2] a) J. A. Urbina, B. Moreno, S. Vierkotter, E. Oldfield, G. Pay-
ares, C. Sanoja, B. N. Bailey, W. Yan, D. A. Scott, S. N. J. Mor-
eno, R. Docampo, J. Biol. Chem. 1999, 274, 33609–33615; b)
M. B. Martin, J. S. Grimley, J. C. Lewis, H. T. Heath III, B. N.
Bailey, H. Hendrick, V. Yardley, A. Caldera, R. Lira, J. A. Ur-
bina, S. N. J. Moreno, R. Docampo, S. L. Croft, E. Oldfield, J.
Med. Chem. 2001, 44, 909–916; c) M. B. Martin, J. M. Sanders,
H. Kendrick, K. de Luca-Fradley, J. C. Lewis, J. S. Grimley,
E. M. van Bussel, J. R. Olsen, G. A. Meints, A. Burzynska, P.
Kafarski, S. L. Croft, E. Oldfield, J. Med. Chem. 2002, 45,
2904–2916.
[3] S. H. Szajnman, A. Montalvetti, Y. Wong, R. Docampo, J. B.
Rodriguez, Bioorg. Med. Chem. Lett. 2003, 13, 3231–3235.
[4] M. P. Hudock, C. E. Sanz-Rodríguez, Y. Song, J. M. W. Chan,
Y. Zhang, S. Odeh, T. Kosztowski, A. Leon-Rossell, J. L. Con-
cepción, V. Yardley, S. L. Croft, J. A. Urbina, E. Oldfield, J.
Med. Chem. 2006, 49, 215–223.
[5] Y. Zhang, A. Leon, Y. Song, D. Studer, C. Haase, L. A. Kosci-
elski, E. J. Oldfield, J. Med. Chem. 2006, 49, 5804–5814.
[6] a) M. T. Barros, A. M. Faísca Phillips, Molecules 2006, 11,
177–196; b) M. T. Barros, A. M. Faísca Phillips, Eur. J. Org.
Chem. 2007, 178–185.
[7] For recent reviews on organocatalysis see, for example a) W.
Notz, F. Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004, 37,
580–591; b) P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed.
2004, 43, 5138–5175; c) C. Bolm, I. Schiffers, L. Zani, Angew.
Chem. Int. Ed. 2005, 44, 1758–1763; d) J. Seayad, B. List, Org.
Biomol. Chem. 2005, 3, 719–724; e) G. Guillena, D. J. Ramón,
Tetrahedron: Asymmetry 2006, 17, 1465–1492; f) B. List, Chem.
Commun. 2006, 819–829; g) S. Mukherjee, J. W. Yang, S.
Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569.
[19]
a) H. Hiemstra, H. Wynberg, Tetrahedron Lett. 1977, 18, 2183–
2186; b) G. L. Lemière, R. A. Dommisse, J. A. Lepoivre, F. C.
Alderweireldt, H. Hiemstra, H. Wynberg, J. B. Jones, E. J.
Toone, J. Am. Chem. Soc. 1987, 109, 1363–1370.
The 2-configuration of 4–7 was assumed to be the same as that
of 3, since a similar reaction mechanism is involved.
a) Y. Kawai, M. Hayashi, N. Tokitoh, Tetrahedron Lett. 2002,
43, 465–467; b) A. Hall, L. D. Harris, C. L. Jones, Tetrahedron
Lett. 2003, 44, 111–114; c) Y. Kawai, M. Hayashi, N. Tokitoh,
Tetrahedron 2005, 61, 5049–5055.
N. T. Reynolds, T. Rovis, Tetrahedron 2005, 61, 6368–6378.
a) I. J. Borowitz, M. Anschel, S. J. Firstenberg, Org. Chem.
1967, 5, 1723–1729; b) F. Mathey, P. H. Savignac, Tetrahedron
1978, 34, 649–654.
a) D. Seebach, J. Golinski, Helv. Chim. Acta 1981, 64, 1413–
1423; b) S. J. Blarer, W. B. Schweizer, D. Seebach, Helv. Chim.
Acta 1982, 65, 1637–1654.
A 2D-NOESY experiment of 4 showed a cross peak between
a multiplet at 2.89–3.01 ppm (H-1Ј) and a doublet at δ =
1.26 ppm (C5Ј–CH3), which indicates that these protons have
a syn relationship, which establishes the configuration of the
major product as trans.
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
For cis–trans equilibration in 2,x-disubstituted cyclohexanones
see, for instance, F. Johnson, L. G. Duquette, A. Whitehead,
L. C. Dorman, Tetrahedron 1974, 30, 3241–3251.
The absence of a cross peak between the multiplets at 2.78–
2.91 ppm (H-1Ј) and 3.36–3.50 ppm (H-3Ј) shows a trans rela-
tionship.
Received: February 12, 2008
Published Online: April 15, 2008
Eur. J. Org. Chem. 2008, 2525–2529
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2529