JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
REFERENCES AND NOTES
1 (a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.;
Samoc, M. Adv. Organomet. Chem. 1998, 42, 291–362; (b)
Zyss, J. Molecular Nonlinear Optics: Materials, Physics and
Devices; Academic Press: Boston, 1993; (c) Prasad, P. N.;
Williams, D. J. Introduction to Nonlinear Optical Effects in
Molecules and Polymers; John Wiley and Sons: New York,
1991.
2 (a) Marder, S. R.; Kippelen, B.; Jen, A. K.-Y.; Peyghambarian,
N. Nature 1997, 388, 845–851; (b) Shi, Y.; Zhang, C.; Zhang, H.;
Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Sci-
ence 2000, 288, 119–122; (c) Chemla, D. S.; Zyss, J. Non-Linear
Optical Properties of Organic Molecules and Crystals; Aca-
demic press: New York, 1987; Vols. 1–2.
3 (a) Serhatli, I. E.; Yagci, Y.; Hattemer, E.; Zentel, R.; Schmal-
zlin, E.; Hohenadl, S.; Brauchle, C.; Meerholz, K. J. Polym. Sci.
Part A: Polym. Chem. 2001, 39, 1589–1595; (b) Zhao, Y.; Lee,
Z.; Qiu, L.; Zhai, J.; Zhou, J.; Shen, Y.; Xu, G.; Ye, P. Eur.
Polym. J. 2001, 37, 445–449; (c) Boogers, J. A. F.; Klaase, P.
T. A.; DeVlieger, J. J.; Tinnemans, A. H. A. Macromolecules
1994, 27, 205–209; (d) Liang, Z. X.; Yan, X. Z.; Chen, Y. L.; Cai,
Z. G.; Yang, P. Q.; Xu, Z. L. React. Funct. Polym. 1997, 32,
75–81.
FIGURE 7 Temporal stability of SHG signals of polymer P4 at
room temperature.
4 (a) Kim, T. D.; Lee, K. S.; Jeong, Y. H.; Jo, J. H.; Chang, S.
Synth. Met. 2001, 117, 307–309; (b) Yoon, C. B.; Moon, K. J.;
Shim, H. K.; Lee, K. S. Mol. Cryst. Liq. Cryst. 1998, 316,
43–46.
both the polymers. Here, the decrease for P4 is also less
sharp than that of P2. A similar trend of decreasing in SHG
value was also observed by Li et al.24 where same types of
isolation groups were used. When temperature above their
Tg was approached, the SHG intensity starts disappearing
rapidly due to relaxation at higher temperature and tends to-
ward minimum. However, when the same sample was
repoled on same area where previous poling was carried out
(as it was relaxed due to temperature), the SHG signal
returned back to similar intensity. This indicates that the
polymers do not undergo any kind of damage at high experi-
mental temperature. Figure 7 shows the temporal stability of
polymer P4. The poled film shows long term stability at
room temperature. Up to 8 days of study there was no
change in the SHG intensity with an initial drop of upto 14%
(approximately).
5 (a) Issam, A. M. Eur. Polym. J. 2007, 43, 214–219; (b)
Chang, H.-L.; Lin, H.-L.; Wang, Y.-C.; Dai, S. A.; Su, W.-C.;
Jeng, R. -J. Polymer 2007, 48, 2046–2055; (c) Apostoluk, A.;
Nuzuki, J. -M.; Lee, K. -S. Opt. Mater. 2006, 263, 337–341.
6 Lee, J.-Y.; Lee, W.-J.; Park, E.-J.; Bang, H.-B.; Rhee, B. K.;
Jung, C.; Lee, S. M.; Lee, J. H. Bull. Korean Chem. Soc. 2003,
24, 1727–1728.
7 Lee, J.-Y.; Bang, H.-B.; Park, E.-J.; Lee, W.-J.; Rhee, B. K.; Lee,
S. M. Polym. Int. 2004, 53, 1838–1844.
8 Li, Z.; Wu, W.; Yu, G.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. Appl.
Mater. Interfaces 2009, 4, 856–863.
9 (a) Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.;
Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct.
Mater. 2002, 12, 565–574; (b) Briers, D.; Picard, I.; Verbiest, T.;
Persoons, A.; Samyn, C. Polymer 2004, 45, 19–24.
10 (a) Percec, V.; Turkaly, P. J.; Asabdei, A. D. Macromolecules
1997, 30, 943–952; (b) Percec, V.; Asabdei, A. D.; Chu, P. Macro-
molecules 1996, 29, 3736–3750; (c) Percec, V.; Kawasumi, M.
Macromolecules 1992, 25, 3851–3861; (d) Percec, V. Pure Appl.
Chem. 1995, 67, 2031–2038.
CONCLUSIONS
The NLO polymers containing azo chromophore as side
chain and aromatic ring in the main chain were synthe-
sized through copper-catalyzed click chemistry. The poly-
mers formed good optically transparent films from THF
solution. The Tg of the polymers was found to be above
100 ꢀC, which ensured reasonable stability of poled poly-
mer at RT. UV–vis spectra showed decrease in absorbance
after poling, which confirms the alignment of dipoles in
the polymer film. Dynamic thermal stability of P4 recorded
continuous SHG intensity versus temperature and a fall
started after 95 ꢀC. Temporal stability of these polymers
were studied at RT up to 8 days. It showed about 14%
initial drop in SHG intensity that remained stable over the
time studied.
11 Percec, V.; Asabdei, A. D. Macromolecules 1997, 30,
7701–7720.
12 Percec, V.; Kawasumi, M. Macromolecules 1993, 26,
3663–3675.
13 (a) Percec, V.; Chu, P.; Kawasumi, M. Macromolecules 1994,
27, 4441–4453; (b) Percec, V.; Kawasumi, M. J. Chem. Soc.
Perkin Trans. 1 1993, 1319–1334.
14 Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed. Engl. 2002, 41, 2596–2599.
15 Wang, Z.-X; Qin, H.-L. Chem. Commun. 2003, 19,
2450–2451.
16 (a) Lenda, F.; Guenone, F.; Tazi, B.; Larbi, N. B. Tetrahedron
Lett. 2004, 45, 8905–8907; (b) Manetsch, R.; Krasinski, A.; Radic,
Z.; Raushel, J.; Taylor, P.; Sharpless, K. B. J. Am. Chem. Soc.
2004, 126, 12809–12818.
The authors thank R.S. Hastak, Director of Naval Material
Research Laboratory, for his permission to publish this work.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 1572–1578
1577