10.1002/anie.202001589
Angewandte Chemie International Edition
COMMUNICATION
generate intermediate 8. The fragmentation of intermediate 8 led
to the generation of sterically hindered carbon radical 9 and
sodium phthalimide salt (NaNPhth) through the extrusion of CO2
with the assistance of ZnCl2. The capture of the other sulfur
dioxide radical anion (7) by sterically hindered carbon radical 9
furnished sulfonyl anion 10 and sulfinate salts 10′ in equilibrium.
Finally, alkylation coupling with the “soft” partner of intermediate
10 afforded desired sulfone product 3.[10b, 10e]
Keywords: sulfone • sulfur dioxide • sodium dithionite •
decarboxylative • radical
[1]
[2]
J. Wang, T. Hou, J. Chem. Inf. Model. 2010, 50, 55-67.
a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57,
2832-2842; b) M. Feng, B. Tang, S. Liang, X. Jiang, Curr. Top. Med.
Chem. 2016, 16, 1200-1216; c) K. A. Scott, J. T. Njardarson, Top. Med.
Chem. 2018, 376, 5; d) “Sulfur Chemistry”: X. Jiang, Topics in Current
Chemistry, Springer, Berlin, 2018; e) N. Wang, P. Saidhareddy, X.
Jiang, Nat. Prod. Rep. 2019, 36, DOI: 10.1039/C8NP00093J.
W. Fischli, J. P. Clozel, V. Breu, S. Buchmann, S. Mathews, H. Stadler,
E. Vieira, W. Wostl, Hypertension 1994, 24, 163-169.
[3]
[4]
[5]
[6]
C, H. Kleinbloesem, C. Weber, E. Fahrner, M. Dellenbach, H. Welker, V.
Schroter, G. G. Belz, Clin. Pharmacol. Ther. 1993, 53, 585-592.
K. M. Foote, K. Blades, A. Cronin, S. Fillery, S. S. Guichard, L. Hassall,
et al. J. Med. Chem. 2013, 56, 2125-2138.
H. Eto, Y. Kaneko, S. Takeda, M. Tokizawa, S. Sato, K. Yoshida, S.
Namiki, M. Ogawa, K. Maebashi, K. Ishida, M. Matsumoto, T. Asaoka,
Chem. Pharm. Bull. 2001, 49, 173-182.
[7]
[8]
P. H. Nicholls, R. H. Bromilow, T. M. Addiscott, Pestic. Sci. 1982, 13,
475-483.
a) P. S. Santos and M. T. S. Mello, J. Mol. Struct. 1988, 178, 121-133; b)
B. Nguyen, E. J. Emmet and M. C. Willis, J. Am. Chem. Soc. 2010, 132,
16372-16373; c) S. Ye and J. Wu, Chem. Commun. 2012, 48, 7753-
7755.
[9]
For books and reviews, see: a) J. Aziz, S. Messaoudi, M. Alami, A.
Hamze, Org. Biomol. Chem. 2014, 12, 9743-9759; b) E. J. Emmett, M.
C. Willis, Asian J. Org. Chem. 2015, 4, 602-611; c) Alex. S. Deeming, M.
C. Willis, 1,4-Disulfino-1,4-diazabicyclo [2.2.2]octane, bis(inner salt),
eEROS, Encyclopedia of Reagents for Organic Synthesis, Wiley, 2016;
d) G. Qiu, K. Zhou, L. Gao, J. Wu, Org. Chem. Front. 2018, 5, 691-705;
e) K. Hofman, N.-W. Liu, G. Manolikakes, Chem. -Eur. J. 2018,
24,11852-11863; f) G. Qiu, K. Zhou, J. Wu, Chem. Commun. 2018, 54,
12561-12569; g) S. Ye, G. Qiu, J. Wu, Chem. Commun. 2019, 55,
1013-1019.
Scheme 4. Mechanistic study.
In summary, a straightforward decarboxylative cross coupling
of carboxylate-derived redox-active esters, sodium dithionite and
electrophiles was developed to construct sterically congested
tertiary sulfones. Inorganic sodium dithionite served as not only
a sulfur dioxide source but also a radical initiator of the
decarboxylation via a SET process. Notably, various naturally
abundant carboxylic acids and synthetically prepared carboxyl-
[10] a) E. J. Emmett, B. R. Hayter, M. C. Willis, Angew. Chem. Int. Ed. 2013,
52, 12679-12683; Angew. Chem. 2013, 125, 12911-12915; b) M. W.
Johnson, S. W. Bagley, N. P. Mankad, R. G. Bergman, V. Mascitti, F.
D. Toste, Angew. Chem. Int. Ed. 2014, 53, 4404-4407; Angew. Chem.
2014, 126, 4493-4496; c) A. S. Deeming, C. J. Russell, M. C. Willis,
Angew. Chem. Int. Ed. 2015, 54, 1168-1171; Angew. Chem. 2015, 127,
1184-1187; d) A. Shavnya, K. D. Hesp, V. Mascitti, A. C. Smith, Angew.
Chem. Int. Ed. 2015, 54, 13571-13575; Angew. Chem. 2015, 127,
13775-13779; e) A. S. Deeming, C. J. Russell, M. C. Willis, Angew.
Chem. Int. Ed. 2016, 55, 747-750; Angew. Chem. 2016, 128, 757-760; f)
D. Zheng, R. Mao, Z. Li, J. Wu, Org. Chem. Front. 2016, 3, 359-363 ; g)
H. Zhu, Y. Shen, Q. Deng, J. Chen, T. Tu, ACS Catal. 2017, 7, 4655-
4659; h) Y. Chen, P. R. D. Murray, A. T. Davies, M. C. Willis, J. Am.
Chem. Soc. 2018, 140, 8781-8787.
containing drugs
underwent
efficient
decarboxylative
sulfonylation for the construction of diversely functionalized
tertiary sulfones. Mechanistic studies further demonstrated that
the alkyl radical and sulfur dioxide radical anion were involved
as intermediates, and the decarboxylation of the carboxylate-
derived redox-active ester was the rate-determining step in this
transformation. Further drug discovery studies with this SO2-
insertion coupling protocol are in progress in our laboratory.
[11] a) A. Shavnya, S. B. Coffey, A. C. Smith, V. Mascitti, Org. Lett. 2013, 15,
6226-6229; b) E. J. Emmett, B. R. Hayter, M. C. Willis, Angew. Chem.
Int. Ed. 2014, 53, 10204-10208; Angew. Chem. 2014, 126, 10368-
10372; c) J. Zhang, K. Zhou, G. Qiu, J. Wu, Org. Chem. Front. 2019, 6.
36-40; d) Y. Li, T. Liu, G. Qiu, J. Wu, Adv. Synth. Catal. 2019, 361,
1154-1159.
Acknowledgements
[12]
a) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 2016, 55, 11925-
11929; Angew. Chem. 2016, 128, 12104-12108; b) F. Liu, J.-Y. Wang,
P. Zhou, G. Li, W.-J. Hao, S.-J. Tu, B. Jiang, Angew. Chem. Int. Ed.
2017, 56, 15570-15574; Angew. Chem. 2017, 129, 15776-15780; c) H.
Xia, Y. An, X. Zeng, J. Wu, Chem. Commun. 2017, 53, 12548-12551. d)
K. Zhou, J. Zhang, L. Lai, J. Cheng, J. Sun, J. Wu, Chem. Commun.
2018, 54, 7459-7462.
The authors are grateful for the financial support provided by
The National Key Research and Development Program of China
(2017YFD0200500), NSFC (21971065, 21722202, 21672069
and 21871089 for M.W.), S&TCSM of Shanghai (Grant
18JC1415600), Professor of Special Appointment (Eastern
Scholar) at Shanghai Institutions of Higher Learning, the
National Program for Support of Top-notch Young Professionals,
and Innovative Research Team of High-Level Local Universities
in Shanghai.
[13]
The C-C coupling of redox-active esters, see: a) J. Cornella, J. T.
Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan, R. Gianatassio, M.
Schmidt, M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
This article is protected by copyright. All rights reserved.