LETTER
New Synthetic Route to Highly Substituted Phthalimides
1379
(3) For recent reviews of alkyne cyclotrimerizations, see:
(a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.;
Aubert, C.; Malacria, M. Org. React. 2007, 68, 1.
(b) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun.
2006, 2209. (c) Chopade, P. R.; Louie, J. Adv. Synth. Catal.
2006, 348, 2307. (d) Yamamoto, Y. Curr. Org. Chem. 2005,
9, 503. (e) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J.
Org. Chem. 2005, 4741.
(4) For recent reports, see: (a) Tanaka, K.; Nishida, G.; Sagae,
H.; Hirano, M. Synlett 2007, 1426. (b) Shibata, T.;
Kawachi, A.; Ogawa, M.; Kuwata, Y.; Tsuchikama, K.;
Endo, K. Tetrahedron 2007, 63, 12853. (c)Tsuchikama, K.;
Kuwata, Y.; Shibata, T. J. Am. Chem. Soc. 2006, 128,
13686. (d) Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.;
Takeuchi, R. J. Org. Chem. 2006, 71, 543. (e) Kesuda, S.;
Okado, T.; Niou, E.; Takeuchi, R. Org. Lett. 2005, 7, 1711.
(f) Shibata, T.; Arai, Y.; Takara, Y. Org. Lett. 2005, 7, 4955.
(g) Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H.
Tetrahedron 2004, 60, 10005. (h) Slowinski, F.; Aubert, C.;
Malacria, M. J. Org. Chem. 2003, 68, 378. (i) Tsukada, N.;
Sugawara, S.; Nakaoka, K.; Inoue, Y. J. Org. Chem. 2003,
68, 5961. (j) Shanmugasundaram, M.; Wu, M.-S.;
Jeganmohan, M.; Huang, C.-W.; Cheng, C.-H. J. Org.
Chem. 2002, 67, 7724. (k) Ikeda, S.; Kondo, H.; Arii, T.;
Odashima, K. Chem. Commun. 2002, 2422.
(15 mL) was added dropwise. The reaction mixture was
stirred at r.t. for 48 h under Ar. The reaction mixture was
poured into an aq soln of 10% HCl and was extracted with
Et2O. The organic phases were washed with H2O, brine, and
dried over Na2SO4. Evaporation of the solvent gave a brown
oil or solid from which the product was separated by column
chromatography over silica gel using a mixture of EtOAc–
pentane (1:1) to give the product 1 with analytical purity in
80–95% yield. All diynes 1 gave analytical and spectral data
in accordance with the structure.
(11) All cyclohexadienes 3 gave analytical and spectral data in
accordance with the structure.
Data for Products 3
Compound 3a: mp 171.5 °C. 1H NMR (400 MHz, CDCl3):
d = 8.08 (br s, 1 H), 7.28–7.43 (m, 10 H), 4.28 (s, 2 H), 4.17
(q, 2 H, J = 8.0 Hz), 4.03 (q, 2 H, J = 8.0 Hz), 3.15 and 3.08
(ABq, 4 H, J = 20.0 Hz), 1.21 (t, 3 H, J = 8.0 Hz), 1.08 (t, 3
H, J = 8.0 Hz). 13C NMR (100 MHz, CDCl3): d = 176.4,
170.9, 170.8, 138.5, 135.1, 128.4, 128.1, 127.7, 124.0, 61.9,
61.7, 58.3, 47.9, 39.5, 14.1, 14.0. IR (neat): 3153, 3052,
1779, 1751, 1697, 1574, 1493, 1235, 1183 cm–1. Anal. Calcd
for C29H27NO6: C, 71.74; H, 5.61; N, 2.88. Found: C, 71.48;
H, 5.66; N, 2.53.
Compound 3b: mp 253.5 °C (dec.). 1H NMR (400 MHz,
DMSO-d6): d = 11.36 (br s, 1 H), 7.29–7.42 (m, 10 H), 4.74
and 4.30 (ABq, 4 H, J = 13.2 Hz), 4.69 (s, 2 H). 13C NMR
(100 MHz, DMSO-d6): d = 177.8, 138.2, 135.2, 134.1,
128.1, 127.3, 122.7, 70.5, 46.2. IR (neat): 3148, 3058, 1774,
1712, 1574, 1494, 1182 cm–1. Anal. Calcd for C22H17NO3: C,
76.95; H, 4.99; N, 4.08. Found: C, 76.70; H, 5.10; N, 3.85.
Compound 3e: mp 205 °C. 1H NMR (400 MHz, CDCl3):
d = 8.18 (br s, 1 H), 7.29 (d, 4 H, J = 12.0 Hz), 6.94 (d, 4 H,
J = 12.0 Hz), 4.24 (s, 2 H), 4.18 (q, 2 H, J = 8.0 Hz), 4.05 (q,
2 H, J = 8.0 Hz), 3.84 (s, 6 H), 3.14 and 3.09 (ABq, 4 H,
J = 16.0 Hz), 1.22 (t, 3 H, J = 8.0 Hz), 1.09 (t, 3 H, J = 8.0
Hz). 13C NMR (75 MHz, CDCl3): d = 176.6, 171.0, 170.8,
159.0, 134.4, 130.9, 129.4, 123.1, 113.9, 61.9, 61.6, 58.4,
55.3, 47.8, 39.6, 14.1, 14.0. Anal. Calcd for C31H31NO8: C,
68.25; H, 5.73; N, 2.57. Found: C, 68.14; H, 5.66; N, 2.41.
(12) (a) Mori, N.; Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1999, 121,
2722. (b) Ikeda, S.; Watanabe, H.; Sato, Y. J. Org. Chem.
1998, 63, 7026. (c) Ikeda, S.; Mori, N.; Sato, Y. J. Am.
Chem. Soc. 1997, 119, 4779.
(l) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org.
Lett. 2001, 3, 4233.
(5) Einhorn, C.; Einhorn, J.; Marcadal-Abbadi, C. Synth.
Commun. 2001, 31, 741.
(6) (a) Chalk, A. J. J. Am. Chem. Soc. 1972, 94, 5928.
(b) Zhou, Z.; Costa, M.; Chiusoli, G. P. J. Chem. Soc.,
Perkin Trans. 1 1992, 1399. (c) Tsuda, T.; Mizuno, H.;
Takeda, A.; Tobisawa, A. Organometallics 1997, 16, 932.
(d) Tsuda, T.; Tobisawa, A.; Mizuno, H.; Takeda, A. Chem.
Commun. 1997, 201. (e) Tsuda, T. J. Mol. Catal. A: Chem.
1999, 147, 11. (f) Yamamoto, Y.; Kitahara, H.; Ogawa, R.;
Kawaguchi, H.; Tatsumi, K.; Itoh, K. J. Am. Chem. Soc.
2000, 122, 4310. (g) For an example of cycloaddition of
three alkynes in the presence of a maleimide double bond,
see: Grigg, R.; Sridharan, V.; Wang, J.; Xu, J. Tetrahedron
2000, 56, 8967.
(7) Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett.
2001, 42, 2991.
(8) Kinoshita, H.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc.
2003, 125, 7784.
(9) General Procedures for Iridium- and Rhodium-
Catalyzed [2+2+2] Diyne–Maleimide Cycloadditions
(Table 2)
Diyne 1 (0.25 mmol), [IrCl(cod)]2 or [RhCl(cod)]2 (0.025
mmol) and DPPE (0.050 mmol) were dissolved in degassed
THF (5 mL) under an Ar atmosphere and the mixture was
stirred at r.t. for 5 min. Maleimide (0.25 mmol) was then
added in one portion and the reaction mixture was refluxed
for 3 h in the case of iridum catalysis or 24 h in the case of
rhodium catalysis. After cooling, the resulting reaction
mixture was concentrated under reduced pressure and
cyclohexadiene 3 was isolated by column chromatography.
(10) General Procedure for the Preparation of Diynes 1 by
Sonogashira Coupling
(13) For classical aromatization reagents, see: Fu, P. P.; Harvey,
R. G. Chem. Rev. 1978, 78, 317.
(14) (a) Möller, B. S.; Undheim, K. Synth. Commun. 2003, 33,
4209. (b) For a review, see: Mashraqui, S.; Keehn, P. Synth.
Commun. 1982, 12, 637. (c) Fatiadi, A. J. Synthesis 1976,
65. (d) Fatiadi, A. J. Synthesis 1976, 133.
(15) General Procedure for Aromatization of
Cyclohexadienes 3
With DDQ: Cyclohexadiene 3 (0.15 mmol) and DDQ (0.15
mmol) were dissolved in anhyd toluene (5 mL) and the
reaction mixture was stirred under reflux for 24 h. Once
cooled, the resulting reaction mixture was washed with
distilled H2O, dried with Na2SO4, and evaporated under
reduced pressure. Phthalimide 4 was obtained after
chromatographical purification using SiO2.
With MnO2: Cyclohexadiene 3 (0.15 mmol) and activated
MnO2 (1.5 mmol) were added to anhyd toluene (5 mL). The
black suspension was stirred under reflux for 48 h or until
completion of the reaction (TLC monitoring). After cooling,
the solid was filtered off and the filtrate evaporated under
reduced pressure, giving pure 4 in quantitative yields.
An oven-dried flask was charged with the corresponding
aryl iodide (15 mmol), PdCl2(PPh3)2 (350 mg, 0.50 mmol),
anhyd CuI (38 mg, 0.2 mmol), dried Et3N (15 mL) and anhyd
THF (15 mL) under Ar. The mixture was then stirred at r.t.
for 10 min. Afterwards, a solution of the corresponding
diacetylene (5 mmol) in anhyd THF (15 mL) and dried Et3N
Synlett 2008, No. 9, 1376–1380 © Thieme Stuttgart · New York