ORGANIC
LETTERS
2008
Vol. 10, No. 23
5469-5472
Rhodium-Complex-Catalyzed Addition
Reactions of Chloroacetyl Chlorides to
Alkynes
Taigo Kashiwabara,† Kouichiro Fuse,† Ruimao Hua,‡ and Masato Tanaka*,†
Chemical Resources Laboratory, Tokyo Institute of Technology,
4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Department of
Chemistry, Tsinghua UniVersity, Beijing 100084, P. R. China
Received October 1, 2008
ABSTRACT
The addition reaction of chloroacetyl chloride derivatives with terminal alkynes was found to be catalyzed by Rh(acac)(CO)(AsPh3) to afford
(Z)-1,4-dichloro-3-buten-2-one derivatives, which displayed diverse reactivities in synthetic elaboration.
Addition of acid chloride derivatives with alkynes is a useful
reaction, affording ꢀ-chloroalkenyl ketones, which allow
numerous synthetic applications, in particular, the synthesis
of heterocyclic compounds.1 These reactions have been made
possible by using Lewis acids like AlCl3. However, as is
anticipated by the use of Lewis acid catalysts, the major
products are usually (E)-isomers with some exceptions
forming mixtures of (E)- and (Z)-isomers2 and the selective
synthesis of the (Z)-isomer still remains to be further
scrutinized.
role to prevent possible decarbonylation in these reactions.
For instance, pioneering work by Nomura, Miura, and co-
workers reported the addition reaction of aroyl chlorides with
alkynes. However, the reaction is not a neat addition of aroyl
chlorides; it proceeds with concomitant decarbonylation,
affording formal aryl chloride addition products.4,5 In view
of synthetic application, the products coming from CO-
retentive addition are more useful than the formal ArCl
adducts since the alkenyl-Cl bond is activated by the R,ꢀ-
unsaturated carbonyl linkage.1,6 Our continued study has
We have reported rhodium-catalyzed addition reactions
of chloroformates, ethoxalyl chloride, and perfluorinated acid
chlorides to terminal alkynes.3 The electronegative substitu-
ent bound to the carbonyl group appears to play an important
(2) (a) Manoiu, D.; Manoiu, M.; Dinulescu, I. G.; Avram, M. ReV. Roum.
Chim. 1984, 29, 193. (b) Manoiu, D.; Manoiu, M.; Dinulescu, I. G.; Avram,
M. ReV. Roum. Chim. 1984, 29, 201. (c) Haack, R. A.; Beck, K. R.
Tetrahedron Lett. 1989, 30, 1605. (d) Manoiu, D.; Manoiu, M.; Dinulescu,
I. G.; Avram, M. ReV. Roum. Chim 1984, 29, 671. (e) Manoiu, D.; Manoiu,
M.; Dinulescu, I. G.; Avram, M. ReV. Roum. Chim 1985, 30, 223. (f)
Martens, H.; Janssens, F.; Hoornaert, G. Tetrahedron 1975, 31, 177. (g)
Benson, W. R.; Pohland, A. E. J. Org. Chem. 1964, 29, 385. (h) Clayton,
J. P.; Guest, A. W.; Taylor, A. W. J. Chem. Soc., Chem. Commun. 1979,
† Tokyo Institute of Technology.
‡ Tsinghua University.
(1) Review: Pohland, A. E.; Benson, W. R. Chem. ReV. 1966, 66, 161.
(a) Triazole: Prodanchunk, N. G.; Megera, I. V.; Patratii, V. K. Pharm.
Chem. J. 1984, 18, 108. (b) Thiazoline: Mirskova, A. N.; Levkovskaya,
G. G.; Kalikhman, I. D.; Voronkov, M. G. Zh. Org. Khim. 1979, 15, 2301.
(c) Pyrazole: Levkovskaya, G. G.; Bozhenkov, G. V.; Malyushenko, R. N.;
Mirskova, A. N. Russ. J. Org. Chem. 2001, 37, 1795. (d) Levkovskaya,
G. G.; Bozhenkov, G. V.; Larina, L. I.; Mirskova, A. N. Russ. J. Org. Chem
2002, 38, 1501. (e) Arnaud, R.; Bensadat, A.; Ghobsi, A.; Laurent, A.; Le
Dre´an, I.; Lesniak, S.; Selomi, A. Bull. Soc. Chim. Fr. 1994, 131, 844. (f)
Isoxazole: Aliev, A. G. Russ. J. Org. Chem. 2005, 41, 1192. (g) Kochetkov,
N. K.; Nesmeanov, A. N.; Semenov, N. A. IzV. Akad. Nauk SSSR, Ser.
Khim. 1952, 87. (h) Thiophene: Alberola, A.; Andres, J. M.; Gonzalez, A.;
Pedrosa, R.; Pradanos, P. Synth. Commun. 1990, 20, 2537. (i) Diab, J.;
Laurent, A.; Le Dre´an, I. J. Fluorine Chem. 1997, 84, 145.
500
.
(3) (a) Hua, R.; Shimada, S.; Tanaka, M. J. Am. Chem. Soc. 1998, 120,
12365. (b) Hua, R.; Onozawa, S.-y.; Tanaka, M. Chem. Eur. J. 2005, 11,
3621–3630. (c) Kashiwabara, T.; Kataoka, K.; Hua, R.; Shimada, S.; Tanaka,
M. Org. Lett. 2005, 7, 2241
(4) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem.
1996, 61, 6941
.
.
(5) A formal CO retentive reaction of aroyl chlorides with norbornene,
which proceeds through decarbonylation-carbonylation processes, has been
reported. See: Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. AdV. Synth.
Catal. 2004, 346, 1765, and references cited therein
.
(6) Hua, R.; Tanaka, M. New J. Chem. 2001, 25, 179
.
10.1021/ol802260w CCC: $40.75
Published on Web 11/08/2008
2008 American Chemical Society