Redox Properties of Ruthenium Nitrosyl Porphyrin Complexes
phyrin (OEP), and iron nitrosyl complexes of these synthetic
porphyrins have been extensively studied.3 Many investiga-
tions on iron nitrosyl porphyrins have included variations
of the axial ligand in the trans position to NO, ranging from
N donors,3c,d such as pyridine, imidazole, or piperidine, to
S donors, such as thiolates,3e,h in order to understand the
role of axial ligands in the properties of coordinated NO.
The heavier analogues of iron, ruthenium nitrosyl por-
phyrins, have also been anticipated to be promising models
in the study of the interactions of NO with heme because of
their enhanced stability relative to iron nitrosyl complexes.4
However, in contrast to the several reports on the
syntheses4c,d,5 and structural studies6 of ruthenium nitrosyl
porphyrins, there have been far fewer investigations on the
electrochemistry7 and spectroelectrochemistry8,9 of ruthenium
nitrosyl porphyrins despite the fact that these would be
essential in understanding electron-transfer processes. In
addition, the unambiguous assignment of the NO oxidation
state10 for NO-coordinated ruthenium porphyrin complexes
[(Por)Ru(NO)(X)] with different porphyrins (Por) and various
axial ligands (X) can be useful in understanding the electron-
transfer processes. All three components, the porphinato
ligands (Por-/2-/3-), the metal (Ru2+/3+), and the NO system
(NO+/0/-) are redox-active in the central redox potential
region so that the determination of individual oxidation state
combinations is not trivial.
In this Article, we report experimental and theoretical
studies of two different ruthenium nitrosyl porphyrin com-
plexes in which we vary the axial ligand from an aqua ligand
to acceptor- or donor-substituted pyridines. The effect of axial
ligands on the redox properties of ruthenium nitrosyl
porphyrin complexes has been investigated by means of
electrochemical and various spectroelectrochemical methods,
including EPR. In a recent report, the small variance in EPR
parameters for very different compounds containing the
{RuNO}7 configuration was noted.11
(1) (a) Murad, F. Angew. Chem., Int. Ed. 1999, 28, 1856. (b) Ribiero,
J. M. C.; Hazzard, J. M. H.; Nussenzveig, R. H.; Champagne, D. E.;
Walker, F. A. Science 1993, 260, 539. (c) Methods in Nitric Oxide
Research; Feelisch, M., Stamler, J. S., Eds.; Wiley: Chichester, U.K.,
1996. (d) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.;
Janczuk, A. Chem. ReV. 2002, 102, 1091. (e) Hrabie, J. A.; Keefer,
L. K. Chem. ReV. 2002, 102, 1135. (f) Nitric Oxide Donors: For
Pharmaceutical and Biological Applications; Wang, P. G., Cai, T. B.,
Taniguchi, N., Eds.; Wiley-VCH: Weinheim, Germany, 2005. (g) Ford,
P. C.; Laverman, L. E.; Lorkovic, I. M. AdV. Inorg. Chem. 2003, 51,
203. (h) Cheng, L.; Richter-Addo, G. B. Binding and Activation of
Nitric Oxide by Metalloporphyrins and Heme. In The Porphyrin
Handbook; Guilard, R., Smith, K. M., Kadish, K. M., Eds.; Academic
Press: New York, 2000; Vol. 4, Chapter 33.
Experimental Section
Instrumentation. EPR spectra in the X band were recorded with
a Bruker System EMX. IR spectra were obtained using a Nicolet
6700 FT-IR instrument; solid-state IR measurements were per-
formed with an ATR unit (smart orbit with diamond crystal).
UV-vis-NIR absorption spectra were recorded on J&M TIDAS
and Shimadzu UV 3101 PC spectrophotometers. Cyclic voltam-
metry was carried out in 0.1 M Bu4NClO4 solutions using a three-
electrode configuration (glassy carbon working electrode, Pt counter
electrode, and Ag wire as a pseudoreference) and a PAR 273
potentiostat and function generator. The ferrocene/ferrocenium (Fc/
Fc+) couple served as an internal reference. Spectroelectrochemistry
was performed by our use of an optically transparent low-
temperature cell.12a A two-electrode capillary served to generate
intermediates for X-band EPR studies.12b
Synthesis. The complex [(TPP)Ru(NO)(H2O)]BF4 was prepared
according to the literature7a and was additionally characterized by
single-crystal X-ray crystallography. The complex [(OEP)Ru(NO)-
(H2O)]BF4 was prepared according to the literature.13 The reduction
studies for [(TPP)Ru(NO)(X)]BF4 and [(OEP)Ru(NO)(X)]BF4,
where X ) pyridine, 4-cyanopyridine, or 4-N,N-dimethylaminopy-
ridine, were performed after an electrocatalyzed exchange in a
solution of the aqua complex in an excess (ca. 10-fold) of the
respective pyridine.7
(2) (a) Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biochem. J. 2001,
357, 593. (b) Boon, E. M.; Huang, S. H.; Marletta, M. A. Nat. Chem.
Biol. 2005, 1, 53. (c) Averill, B. A. Chem. ReV. 1996, 96, 2951. (d)
Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P. Science
2004, 304, 867. (e) Aboelella, N. W.; Reynolds, A. M.; Tolman, W. B.
Science 2004, 304, 836.
(3) (a) Ford, P. C.; Lorkovic, I. M. Chem. ReV. 2002, 102, 993. (b)
Praneeeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44,
2570. (c) Wyllie, G. R. A.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem.
2003, 42, 5722. (d) Praneeth, V. K. K.; Na¨ther, C.; Peters, G.; Lehnert,
N. Inorg. Chem. 2006, 45, 2795. (e) Praneeth, V. K. K.; Haupt, E.;
Lehnert, N. Inorg. Biochem. 2005, 99, 940. (f) Novozhilova, I. V.;
Philip, C.; Lee, J.; Richter-Addo, G. B.; Bagley, K. A. J. Am. Chem.
Soc. 2006, 128, 2093. (g) Richter-Addo, G. B.; Wheeler, R. A.; Hixson,
C. A.; Chen, L.; Khan, M. A.; Ellison, M. A.; Schulz, C. E.; Scheidt,
W. R. J. Am. Chem. Soc. 2001, 123, 6314. (h) Paulat, F.; Lehnert, N.
Inorg. Chem. 2007, 46, 1547.
(4) (a) Ford, P. C.; Laverman, L. E. Coord. Chem. ReV. 2005, 249, 391.
(b) ¸Zanichelli, P. G.; Miotto, A. M.; Estrela, H. F. G.; Soares, F. R.;
Grasi-Kassisse, D. M.; Spadari-Bratfisch, R. C.; Castellano, E. E.;
Roncaroli, F.; Parise, A. R.; Olabe, J. A.; de Brito, A. R. M. S.; Franco,
D. W. Inorg. Biochem. 2004, 98, 1921. (c) Miranda, K. M.; Bu, X.;
Lorkovi, I.; Ford, P. C. Inorg. Chem. 1997, 36, 4838. (d) Bohle, D. S.;
Hung, C. H.; Smith, B. D. Inorg. Chem. 1998, 37, 5798.
X-ray Structure Determination of [(TPP)Ru(NO)(H2O)]BF4 ·
2H2O. Dark-red crystals were grown by the slow diffusion of
hexane into a dichloromethane solution at 269 K. A suitable crystal
(5) Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D. J. Am. Chem.
Soc. 1978, 100, 3015.
(6) (a) Wyllie, G. R. A.; Scheidt, W. R. Chem. ReV. 2002, 102, 1067. (b)
Bezerra, C. W. B.; da Silva, S. C.; Gambardella, M. T. P.; Santos,
R. H. A.; Plicas, L. M. A.; Tfouni, E.; Franco, D. W. Inorg. Chem.
1999, 38, 5660. (c) Tfouni, E.; Krieger, M.; McGarvey, B. R.; Franco,
D. W. Coord. Chem. ReV. 2003, 236, 57.
(10) (a) McCleverty, J. A. Chem. ReV. 2004, 104, 403. (b) Enemark, J. H.;
Feltham, R. D. Coord. Chem. ReV. 1974, 13, 339. (c) Westcott, B. L.;
Enemark, J. H. In Inorganic Electronic Structure and Spectroscopy;
Solomon, E. I., Lever, A. B. P., Eds.; Wiley: New York, 1999; Vol.
2, p 403.
(11) Frantz, S.; Sarkar, B.; Sieger, M.; Kaim, W.; Roncaroli, F.; Olabe,
J. A.; Za´lisˇ, S. Eur. J. Inorg. Chem. 2004, 2902, and literature cited.
(12) (a) Mahabiersing, T.; Luyten, H.; Nieuwendam, R. C.; Hartl, F. Collect.
Czech. Chem. Commun. 2003, 68, 1687. (b) Kaim, W.; Ernst, S.;
Kasack, V. J. Am. Chem. Soc. 1990, 112, 173.
(13) Yi, G.; Khan, M. A.; Richter-Addo, G. B. Inorg. Chem. 1996, 35,
3453.
(7) (a) Kadish, K. M.; Adamian, V. A.; Van Caemelbecke, E.; Tan, Z.;
Tagliatesta, P.; Bianco, P.; Boschi, T.; Yi, G.-B.; Khan, M. A.; Richter-
Addo, G. B. Inorg. Chem. 1996, 35, 1343. (b) Kadish, K. M. Prog.
Inorg. Chem. 1986, 34, 435.
(8) Carter, C. M.; Lee, J.; Hixson, C. A.; Powell, D. R.; Wheeler, R. A.;
Shaw, M. J.; Richter-Addo, G. B. Dalton Trans. 2006, 1338.
(9) (a) Brown, G. M.; Hopf, F. R.; Ferguson, J. A.; Meyer, T. J.; Whitten,
D. G. J. Am. Chem. Soc. 1973, 95, 5939. (b) Kadish, K. M.; Mu, X.
Pure Appl. Chem. 1990, 62, 1051. (c) Mu, X. H.; Kadish, K. M.
Langmuir 1990, 6, 51. (d) Rillema, D. P.; Nagle, J. K.; Barrringer,
L. F.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 56. (e) Morishima,
I.; Takamuki, Y.; Shiro, Y. J. Am. Chem. Soc. 1984, 106, 7666. (f)
Fujita, E.; Chang, C. K.; Fajer, J. J. Am. Chem. Soc. 1985, 107, 7665.
(14) (a) Hope, H. Prog. Inorg. Chem. 1995, 41, 1. (b) Sheldrick G. M.
SHELXTL, PC 5.03; Siemens Analytical X-ray Instruments Inc.:
Madison, WI, 1994. (c) Sheldrick, G. M. Program for Crystal Structure
Solution and Refinement; Universita¨t Go¨ttingen, 1997.
Inorganic Chemistry, Vol. 47, No. 16, 2008 7107