Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
DOI: 10.1039/C7OB00701A
COMMUNICATION
Journal Name
8
9
(a) L.-G. Xie, S. Niyomchon, A. J. Mota, L. González and N.
Maulide, Nat. Commun., 2016, , 10914; (b) P. Chen, C. X.
Song, W. S. Wang, X. L. Yu and Y. Tang, RSC Adv., 2016, 6,
80055.
Y. Zhao, Y. Hu, C. Wang, X. Li and B. Wan, J. Org. Chem., 2017,
82, doi: 10.1021/acs.joc.7b00076.
In conclusion, we have developed a formal [3+2] approach
to access aminoimidazoles through the Tf2NH-catalyzed
cycloaddition of oxadiazolones with ynamides, in which
oxadiazolones are first employed as the three-atom building
units. The approach also features a metal-free catalytic
cycloaddition process, broad substrate scope, and high
efficiency. Besides, the N-methyl products can be readily
converted to free N-H aminoimidazoles. We believe that this
metal-free catalytic cycloaddition will have potential
applications in the medicinal chemistry.
7
10 (a) C. X. Wang, X. C. Li, F. Wu and B. S. Wan, Angew. Chem.
Int. Ed., 2011, 50, 7162; (b) B. Pan, C. X. Wang, D. P. Wang, F.
Wu and B. S. Wan, Chem. Commun., 2013, 49, 5073; (c) C. X.
Wang, D. P. Wang, H. Yan, H. L. Wang, B. Pan, X. Y. Xin, X. C.
Li, F. Wu and B. S. Wan, Angew. Chem. Int. Ed., 2014, 53
,
11940; (d) T. F. Li, F. Xu, X. C. Li, C. X. Wang and B. S. Wan,
Angew. Chem. Int. Ed., 2016, 55, 2861.
11 (a) S. A. Munk, D. A. Harcourt, P. N. Arasasingham, J. A. Burke,
A. B. Kharlamb, C. A. Manlapaz, E. U. Padillo, D. Roberts, E.
Runde, L. Williams, L. A. Wheeler and M. E. Garst, J. Med.
Chem., 1997, 40, 18; (b) M. Nodwell, A. Pereira, J. L. Riffell, C.
Zimmerman, B. O. Patrick, M. Roberge and R. J. Andersen, J.
Org. Chem., 2009, 74, 995; (c) J. D. Sullivan, R. L. Giles and R.
Acknowledgements
Financial support from the National Natural Science
Foundation of China (no. 21572225) is gratefully
acknowledged.
E. Looper, Curr. Bioact. Compd., 2009, 5, 39.
12 M. J. Su, N. Hoshiya and S. L. Buchwald, Org. Lett., 2014, 16
832.
,
Notes and references
13 C. E. Garrett and K. Prasad, Adv. Synth. Catal., 2004, 346, 889.
14 The structure of 3aa’ was unambiguously confirmed by X-ray
crystallography. The ellipsoid contour percent probability
level is 50%. Detailed information can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
15 When 1.1 equivalent of oxadiazolone 2a was used, it is
difficult to isolate the mixture of 3aa and the remaining 2a
during the column chromatography.
1
(a) R. E. Bolton, S. J. Coote, H. Finch, A. Lowdon, N. Pegg and
M. V. Vinader, Tetrahedron Lett., 1995, 36, 4471; (b) R. Hett,
R. Krähmer, I. Vaulont, K. Leschinsky, J. S. Snyder and P. H.
Kleine, Org. Proc. Res. Dev., 2002, 6, 896.
2
For examples on rhodium catalysis: (a) D. L. Smith, S. R.
Chidipudi, W. R. Goundry and H. W. Lam, Org. Lett., 2012, 14
4934; (b) R. N. Straker, Q. Peng, A. Mekareeya, R. S. Paton
,
and E. A. Anderson, Nat. Commun., 2016,
7, 10109; For
examples on ruthenium catalysis: (c) C. Schotes and A. 16 For a review on keteniminium ion: (a) C. Madelaine, V.
Valerio and N. Maulide, Chem.-Asian. J., 2011, 6, 2224; For
Mezzetti, Angew. Chem. Int. Ed., 2011, 50, 3072; (d) P. R.
Walker, C. D. Campbell, A. Suleman, G. Carr and E. A.
Anderson, Angew. Chem. Int. Ed., 2013, 52, 9139; For an
example on platinum catalysis: (e) W.-B. Shen, X.-Y. Xiao, Q.
Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu and L.-W. Ye, Angew.
Chem. Int. Ed., 2017, 56, 605.
For a review on gold catalysis: (a) D. B. Huple, S. Ghorpade
and R. S. Liu, Adv. Synth. Catal., 2016, 358, 1348; For some
leading examples: (b) P. W. Davies, A. Cremonesi and L.
Dumitrescu, Angew. Chem. Int. Ed., 2011, 50, 8931; (c) R. B.
Dateer, B. S. Shaibu and R. S. Liu, Angew. Chem. Int. Ed.,
2012, 51, 113; (d) S. K. Pawar, R. L. Sahani and R. S. Liu,
Chem.‒Eur. J., 2015, 21, 10843; (e) L. Zhu, Y. H. Yu, Z. F. Mao
and X. L. Huang, Org. Lett., 2015, 17, 30; (f) Y. F. Wu, L. Zhu, Y.
some examples: (b) C. Theunissen, B. Metayer, N. Henry, G.
Compain, J. Marrot, A. Martin-Mingot, S. Thibaudeau and G.
Evano, J. Am. Chem. Soc., 2014, 136, 12528; (c) B. Peng, X. L.
Huang, L. G. Xie and N. Maulide, Angew. Chem. Int. Ed., 2014,
53, 8718; (d) M. Lecomte and G. Evano, Angew. Chem. Int.
Ed., 2016, 55, 4547.
3
H. Yu, X. S. Luo and X. L. Huang, J. Org. Chem., 2015, 80
11407; (g) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao,
W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, , 1265; (h) C.
,
6
Shu, Y. H. Wang, B. Zhou, X. L. Li, Y. F. Ping, X. Lu and L. W. Ye,
J. Am. Chem. Soc., 2015, 137, 9567; (i) A. D. Gillie, R. J. Reddy
and P. W. Davies, Adv. Synth. Catal., 2016, 358, 226; (j) H. M.
Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K.
Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (k) H. M. Jin, B.
Tian, X. L. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K.
Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688; (l) M. Chen,
N. Sun, H. Y. Chen and Y. H. Liu, Chem. Commun., 2016, 52
,
6324; (m) R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed.,
2017, 56, 1026.
(a) S. N. Karad and R. S. Liu, Angew. Chem. Int. Ed., 2014, 53,
4
9072; (b) Y. L. Chen, P. Sharma and R. S. Liu, Chem. Commun.,
2016, 52, 3187.
5
6
7
Y. Wang, L. J. Song, X. H. Zhang and J. W. Sun, Angew. Chem.
Int. Ed., 2016, 55, 9704.
J. Y. Zhang, Q. S. Zhang, B. Xia, J. Wu, X. N. Wang and J. B.
Chang, Org. Lett., 2016, 18, 3390.
L. G. Xie, S. Shaaban, X. Y. Chen and N. Maulide, Angew.
Chem. Int. Ed., 2016, 55, 12864.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins