its derivative-catalyzed Aldol reactions. Therefore, a subtle
change in catalyst structure may change the pKa value of
the catalyst to affect the strength of hydrogen bondings, such
that a dramatic enhancement of the catalytic activity and
selectivity may be anticipated.9 However it is a significant
challenge to realize this goal. Herein, we describe a new
series of tunable and bifunctional organocatalysts in attaining
the direct asymmetric aldol reaction with high efficiency.
diaminocyclo-hexane. The structures of 1 were confirmed
by X-ray crystallographic analysis (see the Supporting
Information). The pKa of the diamide can be readily tuned
by varying the R group (Scheme 1).10 The catalytic activity
of these new catalysts were then evaluated in a direct
asymmetric aldol reaction of 4-nitrobenzaldehyde 3a with
cyclohexanone 2.
Table 1. Enantioselective Direct Aldol Reaction of
4-Nitrobenzaldehyde (3a) and Cyclohexanone (2) under Various
Conditions
Scheme 1. Tunable and Bifunctional Organocatalysts
entry catalyst time (h) yieldb (%) dr (anti/syn)c eed (%)
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1f
1b
1b
1b
1b
2
5
8
12
7
24
24
120
5
73
81
89
63
79
89
89
74
83
90
84/16
75/25
76/24
77/23
73/27
79/21
96/4
79/21
91/9
85/15
54
86
80
73
73
69
92e
65f
57g
55h
10
5
aThe reactions were conducted with 1 (20 mol %), AcOH (20 mol %),
3a (0.5 mmol), and 2/CHCl3 (1:1) (2 mL) for 6-24 h. b Isolated yield of
mixture of anti/syn. c Determined by chiral HPLC analysis of the mixture
of anti/syn product. d Determined by chiral HPLC. e At -25 °C. f Without
AcOH, 120 h. g In the presence of 20 mol % of 1b and 10 mol % of AcOH.
h In the presence of 20 mol % of 1b and 40 mol % of AcOH.
A variety of bifunctional L-prolinamide derivatives 1, as
shown in Scheme 1, were prepared from commercially
available L-proline and enantiopure (R,R)- or (S,S)-1,2-
(6) (a) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.;
Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (b) Tang, Z.;
Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5755. (c) Tang, Z.; Yang, Z.-H.; Chen,
X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc.
2005, 127, 9285.
(7) (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H.
Angew. Chem., Int. Ed. 2004, 43, 1983. (b) Saito, S.; Yamamoto, H. Acc.
Chem. Res. 2004, 37, 570.
(8) (a) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911.
(b) Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am. Chem. Soc.
2003, 125, 16. (c) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J.
Am. Chem. Soc. 2003, 125, 2475.
(9) For selected literature, see: (a) Berkessel, A.; Koch, B.; Lex, J. AdV.
Synth. Catal. 2004, 346, 1141. (b) Cobb, A. J. A.; Shaw, D. M.; Longbottom,
D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84.
(10) The pKa values of 1a-f were estimated by evaluating the free energy
change ∆Ga (pKa ) ∆Ga/2.303RT). The geometries of 1a-f optimized at
the HF/6-31G* level were employed to perform self-consistent reaction field
(SCRF) calculations at the B3LYP/6-31+G* level, for calculating free
energies of solvation in the chloroform. All calculations were performed
by using the Gaussian 03 program. Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.
K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and
Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
As can be seen from the results summarized in Table 1,
the catalytic activities and the steroselectivities of 1a-f were
significantly influenced by the tuning of the amide moiety.
Among the catalytic systems examined, 1b with 20 mol %
of acetic acid (AcOH) exhibited excellent catalytic efficiency,
affording 4a in 81% yield and good stereoselectivity (anti/
syn 75:25; 86% ee) (Table 1, entry 2).11 Note that 1b showed
a superior level of enantiocontrol to its diastereomer 1f (Table
1, entry 2 vs entry 6). This indicates that (1R,2R)-diami-
nocyclohexanes can be superior to L-prolines in enhancing
stereochemical control. As solubility is not an issue for our
tunable bifunctional catalysts of L-prolinamide derivatives,
as compared to that of the proline catalyst, excellent
selectivity (anti/syn 96:4; 92% ee) was achieved by decreas-
ing the reaction temperature to -25 °C (Table 1, entry 7).
Significantly, we found that the concentration of AcOH
has a remarkable effect on the catalytic activity and selectiv-
ity. Without adding AcOH, the reaction proceeded slowly
in low selectivity (Table 1, entry 8 vs entry 2). A ratio of
AcOH to 1b of 1:2 enhanced the activity by 24 times with
an improved yield and increased diastereoselectivity, but
decreased enantioselectivity (Table 1, entry 9 vs entry 8),
whereas use of a ratio of AcOH to 1b of 2:1 led to similar
(11) Mase, N.; Tanaka, F.; Barbas III, C. F. Org. Lett. 2003, 5, 4369.
Org. Lett., Vol. 7, No. 20, 2005
4544