This work was made possible by a grant from The Danish
National Research Foundation and OChemSchool. Thanks
are expressed to Dr Jacob Overgaard for the X-ray analysis.
Notes and references
1. For recent reviews on organocatalysis see e.g.: (a) P. L. Dalko and
L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138; (b) A. Berkessel and
H. Groger, Asymmetric Organocatalysis, VCH, Weinheim, Germany,
2004; (c) Acc. Chem. Res., 2004, 37(8), special issue on organocatalysis;
(d) J. Seayed and B. List, Org. Biomol. Chem., 2005, 3, 719; (e) B. List
and J.-W. Yang, Science, 2006, 313, 1584; (f) B. List, Chem. Commun.,
2006, 819; (g) M. J. Gaunt, C. C. C. Johansson, A. McNally and
N. C. Vo, Drug Discovery Today, 2007, 2, 8; (h) P. I. Dalko,
Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007;
(i) Chem. Rev., 2007, 107(12), special issue on organocatalysis.
2. For recent reviews on organocatalytic cascade and related reactions
see e.g.: (a) D. Enders, C. Grondal and M. R. M. Huttl, Angew.
Chem., Int. Ed., 2007, 46, 1570; (b) G. Guillena, D. J. Ramon and
M. Yus, Tetrahedron: Asymmetry, 2007, 18, 693; (c) D. J. Ramon
and M. Yus, Angew. Chem., Int. Ed., 2005, 44, 1602. See also e.g.:
(d) D. Enders, M. R. M. Huttl, C. Grondal and G. Raabe, Nature,
2006, 441, 861(e) D. Enders, M. R. M. Huttl, J. Runsink, C. Raabe
and B. Wendt, Angew. Chem., Int. Ed., 2007, 46, 467(f) Y. Hayashi,
T. Okano, S. Aratake and D. Hazelard, Angew. Chem., Int. Ed.,
2007, 46, 4922(g) H. Y. Kim, A. E. Lurain, P. Garcia-Garcia,
P. J. Carroll and P. J. Walsh, J. Am. Chem. Soc., 2005, 127,
13138(h) N. Halland, P. S. Aburel and K. A. Jørgensen, Angew.
Chem., Int. Ed., 2004, 43, 1272.
3. E. Reyes, H. Jiang, A. Milelli, P. Elsner, R. G. Hazell and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2007, 46, 9202.
4. (a) R. Takagi, Y. Miwa, T. Nerio, Y. Inoue, S. Matsumura and
K. Ohkata, Org. Biomol. Chem., 2007, 5, 286; (b) J. Qi and
J. A. Porco, Jr, J. Am. Chem. Soc., 2007, 129, 12682.
5. (a) J. K. F. Geirsson, J. F. Johannesdottir and S. Jonsdottir, Synlett,
1993, 133; (b) J. K. F. Geirsson and J. F. Johannesdottir, J. Org.
Chem., 1996, 61, 7320; (c) K. Aoyagi, H. Nakamura and
Y. A. Yamamoto, J. Org. Chem., 1999, 64, 4148; (d) J. K.
F. Geirsson and E. G. Eiriksdottir, Synlett, 2001, 664; (e) J. K.
F. Geirsson, L. Arnadottir and S. Jonsson, Tetrahedron, 2004, 60, 9149.
6. J. K. F. Geirsson, S. Jonsson and J. Valgeirsson, Bioorg. Med.
Chem., 2004, 12, 5563.
Fig. 1 X-Ray structure of (1R,4R,5S,6S,7R,9S)-tetramethyl 7-(2-
bromophenyl)-3,5-dihydroxybicyclo[3.3.1]non-2-ene-2,4,6,9-tetracar-
boxylate 4i. Colour coding: white: hydrogen; grey: carbon; red:
oxygen; green: bromine. Some hydrogen atoms are omitted for clarity.
This new organocatalytic reaction can easily be scaled up to
gram scale and isolation of the optically active bicyclo[3.3.1]-
non-2-enes 4 was performed using chromatography-free pro-
cedures by crystallizing the product after finishing the
reaction. Using this procedure, product 4a was isolated in 3
g quantity (44% yield, compared to 48% on the mg scale) and
as an enantiopure compound; i.e. dr 499 : 1 and 499% ee.
The other products could also be isolated as enantiopure
compounds after recrystallization.
The optically active bicyclo[3.3.1]non-2-enes having
6
stereocenters are set up for the introduction of 2 additional
stereocenters in the ring systems and e.g. initial hydrogenation
studies of the enol in 4a shows promising results and is
currently under investigation.
The absolute configuration of tetramethyl 7-(2-bromophenyl)-
3,5-dihydroxybicyclo[3.3.1]non-2-ene-2,4,6,9-tetracarboxylate 4i,
was unambiguously established as (1R,4R,5S,6S,7R,9S) by
X-ray crystallographic analysis (Fig. 1).8
7. For design and introduction of this catalytic system see: e.g.:
(a) M. Marigo, T. C. Wabnitz, D. Fielenbach and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2005, 44, 794. See also:
(b) M. Marigo, D. Fielenbach, A. Braunton, A. Kjærsgaard and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2005, 44, 3703;
(c) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew. Chem.,
Int. Ed., 2005, 44, 4212; (d) J. Franzen, M. Marigo, D. Fielenbach,
T. C. Wabnitz, A. Kjærsgaard and K. A. Jørgensen, J. Am. Chem.
Soc., 2005, 127, 18296; (e) C. Palomo and A. Mielgo, Angew.
Chem., Int. Ed., 2006, 45, 7876.
8. Crystal data for [4i]w: C23H25BrO10, M = 540.06, orthorhombic,
space group P21212 (no. 112), a = 15.9364(7) A, b = 15.936(0) A,
c = 18.6763(10) A, V = 4743.2(3) A3, T = 293 K, Z = 8, Dc =
1.516 g cmÀ3, m(Mo Ka, l = 0.71073 A) = 1.789 mmÀ1, 16 280
reflections collected, 5229 unique [Rint = 0.0296], which were
used in all calculations. Refinement on F2, final R(F) = 0.044,
wR(F2) = 0.0808.
Organocatalysis has been taken to a new level, allowing the
selective formation of 4 new carbon–carbon bonds, providing
6 new stereocenters, one of which is quaternary, leading to the
controlled synthesis of 1 out of 64 possible stereoisomers by
mixing two simple molecules, an a,b-unsaturated aldehyde
and a tricarbonyl compound. The products generated, opti-
cally active bicyclo[3.3.1]non-2-enes, are formed in high yield,
and with excellent diastereo- and enantiocontrol and perform-
ing the reaction on the gram scale leads to optically pure
products. The optically active bicyclo[3.3.1]non-2-enes are
bicyclic carbon skeletons which are precursors for important
biomolecules with antitumor activity.
9. Note added in proof: O. Penon, A. Carlone, A. Mazzanti,
M. Locatelli, L. Sambri, G. Bartoli and P. Melchiorre, Chem.–Eur.
J., 2008, 14, 4788.
ꢀc
This journal is The Royal Society of Chemistry 2008
3018 | Chem. Commun., 2008, 3016–3018