crosslinking, the transparent gelation cavity was submerged in
tetrahydrofuran (THF) and irradiated with 350 nm light for
2 d. The THF solution was then analyzed by size exclusion
chromatography (SEC) and the resulting chromatograms are
shown in Fig. 2. As expected, both MNs yielded a major peak
with Mn E 20 kDa which corresponds to successfully cross-
linked ends of 1. Both MNs also yielded a minor peak with Mn
E 10 kDa corresponding to unreacted or ‘‘dangling’’ chain
ends within the network. The MNs crosslinked with diDIFO
showed fewer unreacted ends, a possible result of either its
greater reactivity or, perhaps because it is smaller, its greater
mobility in the highly hindered MN environment. Finally, the
crosslinking yield for SPAAC is comparable to that found
previously for CuAAC,2c confirming the high efficiency of the
SPAAC reaction.
Notes and references
1. (a) M. C. Cushing and K. S. Anseth, Science, 2007, 316, 1133;
(b) C.-C. Lin and A. T. Metters, Adv. Drug Delivery Rev., 2006, 58,
1379; (c) M. Guenther, D. Kuckling, C. Corten, G. Gerlach,
J. Sorber, G. Suchaneck and K. F. Arndt, Sens. Actuators, B,
2007, 126, 97; (d) N. Blow, Nat. Methods, 2007, 4, 665;
(e) J. Kopecek and J. Yang, Polym. Int., 2007, 56, 1078;
(f) E. W. H. Jager, E. Smela and O. Inganas, Science, 2000, 290,
1540.
2. (a) M. Achilleos, T. Krasia-Christoforou and C. S. Patrickios,
Macromolecules, 2007, 40, 5575; (b) M. Malkoch, R. Vestberg,
N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick,
Q. Liao, C. W. Frank, K. Kingsbury and C. J. Hawker, Chem.
Commun., 2006, 2774; (c) J. A. Johnson, M. G. Finn,
J. T. Koberstein and N. J. Turro, Macromolecules, 2007, 40,
3589; (d) J. A. Johnson, D. R. Lewis, D. D. Diaz, M. G. Finn,
J. T. Koberstein and N. J. Turro, J. Am. Chem. Soc., 2006, 128,
6564.
This study represents the first example of SPAAC in
materials synthesis, specifically for the crosslinking of poly-
meric materials, and it opens a general route to complex,
functional MNs capable of biocompatible, in situ crosslinking,
controlled gelation time, and tailored degradation. Addition-
ally, this work represents the first example of monitoring the
kinetics of an in situ crosslinking process using the azide
antisymmetric FTIR stretch, an approach which can be
widely applied to studying the increasing repertoire of azide
reactions.10
3. C. J. Hawker and K. L. Wooley, Science, 2005, 309, 1200.
4. H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004.
5. (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596;
(b) C. W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057.
6. K. Matyjaszewski and J. Xia, Chem. Rev., 2001, 101, 2921.
7. A. J. Link, M. K. S. Vink, N. J. Agard, J. A. Prescher, C. R. Bertozzi
and D. A. Tirrell, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 10180.
8. (a) B. S. Sumerlin, N. V. Tsarevsky, H. Gao, P. Golas, G. Louche,
R. Y. Lee and K. Matyjaszewski, ACS Symp. Ser., 2006, 944, 140;
(b) J.-F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018.
9. (a) N. J. Agard, J. A. Prescher and C. R. Bertozzi, J. Am. Chem.
Soc., 2004, 126, 15046; (b) N. J. Agard, J. M. Baskin,
J. A. Prescher, A. Lo and C. R. Bertozzi, ACS Chem. Biol.,
2006, 1, 644; (c) J. M. Baskin, J. A. Prescher, S. T. Laughlin,
N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli and
C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 16793.
10. J. A. Prescher and C. R. Bertozzi, Nat. Chem. Biol., 2005, 1, 13.
We thank the NSF (DMR-0214363, IGERT-0221589,
DMR-0213574, CHE04-15516, graduate fellowship), the
NIH (GM058867), the NDSEG (graduate fellowship), and
the ACS Division of Organic Chemistry (graduate fellowship)
for support of this work. We also thank J. Codelli and
B. Dickinson for technical assistance.
ꢀc
This journal is The Royal Society of Chemistry 2008
3066 | Chem. Commun., 2008, 3064–3066