Published on Web 07/29/2008
Molecular All-Photonic Encoder-Decoder
Joakim Andre´asson,*,† Stephen D. Straight,‡ Thomas A. Moore,*,‡ Ana L. Moore,*,‡
and Devens Gust*,‡
Department of Chemical and Biological Engineering, Chalmers UniVersity of Technology,
SE-412 96 Go¨teborg, Sweden, and Department of Chemistry and Biochemistry,
Arizona State UniVersity, Tempe, Arizona 85287-1604
Received April 17, 2008; E-mail: a-son@chalmers.se; gust@asu.edu; tom.moore@asu.edu; amoore@asu.edu
Abstract: In data processing, an encoder can compress digital information for transmission or storage,
whereas a decoder recovers the information in its original form. We report a molecular triad consisting of
a dithienylethene covalently linked to two fulgimide photochromes that performs as an all-photonic single-
bit 4-to-2 encoder and 2-to-4 decoder. The encoder compresses the information contained in the four inputs
into two outputs. The inputs are light of four different wavelengths that photoisomerize the fulgimide,
dithienylethene, or both. The outputs are absorbance at two wavelengths. The two decoder inputs are
excitation at two wavelengths, whereas the four outputs, which recover the information compressed into
the inputs, are absorbance at two wavelengths, transmittance at one wavelength, and fluorescence emission.
The molecule can be cycled through numerous encoder and decoder functions without significant
photodecomposition. Molecular photonic encoders and decoders could potentially be used for labeling and
tracking of nano- and microscale objects as well as for data manipulation.
Table 1. Truth Table for the 4-to-2 Encoder
Introduction
input I0
input I1
input I2
input I3
output O1
output O0
It is becoming well-established that because some molecules
can act as reversible switches in response to stimuli, they can
be used to perform digital data-processing functions, much as
is done by the transistor switches in conventional electronics.
Molecular switches, Boolean logic gates, and other data
manipulation devices have been described.1–11 Although most
of the initial reports of such systems were of simple switches
or single-function logic gates, more recent work has produced
molecules or mixtures of molecules capable of performing a
variety of logic functions.12–19 Most often, these systems use
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
1
0
1
one or more chemical inputs. We have been investigating the
use of light as inputs and outputs, usually via photochromes
that interact photochemically or photophysically with attached
chromophores. Photochromes are photochemical switches that
may be photoisomerized back and forth between two (meta)-
stable states.20 Recent implementations include a half-adder,21
2:1 digital multiplexer,22 and 1:2 demultiplexer.23
A digital encoder converts data into a code. One reason to
do this is to compress information for transmission or storage.
Consider, for example, the single-bit 4-to-2 encoder, whose truth
table is shown in Table 1. The encoder converts 4 bits of data
† Chalmers University of Technology.
‡ Arizona State University.
(1) Ball, P. Nature (London, U.K.) 2000, 406, 118–120.
(2) Magri, D. C.; Vance, T. P.; de Silva, A. P. Inorg. Chim. Acta 2007,
360, 751–764.
(3) Tian, H.; Wang, Q. C. Chem. Soc. ReV. 2006, 35, 361–374.
(4) Venturi, M.; Balzani, V.; Ballardini, R.; Credi, A.; Gandolfi, M. T.
Int. J. Photoenergy 2004, 6, 1–10.
(5) de Silva, A. P.; Uchiyama, S. Nat. Nanotechnol. 2007, 2, 399–410.
(6) de Silva, A. P.; Uchiyama, S.; Vance, T. P.; Wannalerse, B. Coord.
Chem. ReV. 2007, 251, 1623–1632.
(17) Frezza, B. M.; Cockroft, S. L.; Ghadiri, M. R. J. Am. Chem. Soc.
2007, 129, 14875–14879.
(7) Balzani, V.; Credi, A.; Venturi, M. ChemPhysChem 2003, 3, 49–59.
(8) Credi, A. Angew. Chem., Int. Ed. 2007, 46, 5472–5475.
(9) Brown, G. J.; de Silva, A. P.; Pagliari, S. Chem. Commun. (Cambridge
U.K.) 2002, 2461–2463.
(18) Browne, W. R.; De Jong, J. J. D.; Kudernac, T.; Walko, M.; Lucas,
L. N.; Uchida, K.; van Esch, J. H.; Feringa, B. L. Chem.sEur. J.
2005, 11, 6414–6429.
(19) Strack, G.; Ornatska, M.; Pita, M.; Katz, E. J. Am. Chem. Soc. 2008,
130, 4234–4235.
(10) Pischel, U. Angew. Chem., Int. Ed. 2007, 46, 4026–4040.
(11) Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001, 123, 4651–4652.
(12) Niazov, T.; Baron, R.; Katz, E.; Lioubashevski, O.; Willner, I. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 17160–17163.
(20) Gust, D.; Moore, T. A.; Moore, A. L. Chem. Commun. (Cambridge
U.K.) 2006, 2006, 1169–1178.
(21) Andre´asson, J.; Straight, S. D.; Kodis, G.; Park, C.-D.; Hambourger,
M.; Gervaldo, M.; Albinsson, B.; Moore, T. A.; Moore, A. L.; Gust,
D. J. Am. Chem. Soc. 2006, 12, 16259–16265.
(13) Margulies, D.; Melman, G.; Felder, C. E.; Arad-Yellin, R.; Shanzer,
A. J. Am. Chem. Soc. 2004, 126, 15400–15401.
(14) Liu, Y.; Jiang, W.; Zhang, H. Y.; Li, C. J. J. Phys. Chem. B 2006,
110, 14231–14235.
(22) Andre´asson, J.; Straight, S. D.; Bandyopadhyay, S.; Mitchell, R. H.;
Moore, T. A.; Moore, A. L.; Gust, D. Angew. Chem., Int. Ed. 2007,
46, 958–961.
(15) Baron, R.; Lioubashevski, O.; Katz, E.; Niazov, T.; Willner, I. J. Phys.
Chem. A 2006, 110, 8451–8456.
(23) Andre´asson, J.; Straight, S. D.; Bandyopadhyay, S.; Mitchell, R. H.;
Moore, T. A.; Moore, A. L.; Gust, D. J. Phys. Chem. C 2007, 111,
14274–14278.
(16) Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am. Chem.
Soc. 2007, 129, 347–354.
9
11122 J. AM. CHEM. SOC. 2008, 130, 11122–11128
10.1021/ja802845z CCC: $40.75
2008 American Chemical Society