Organometallics 2008, 27, 4193–4198
4193
Carbene and Carbonyl Transfer from [W(CO)5(carbene)] to
Palladium, Affording Palladium(II) Carbene Acyl Complexes
Isabel Meana, Ana C. Albe´niz,* and Pablo Espinet*
IU CINQUIMA/Qu´ımica Inorga´nica, UniVersidad de Valladolid, 47071-Valladolid, Spain
ReceiVed April 22, 2008
The reaction of [W(CO)5{C(NEt2)Ph}] (3) with [PdClR(SMe2)]2 (R ) Me, Ph) occurs with transfer of
carbene and carbonyl groups to give [PdCl{C(O)R}{C(NEt2)Ph}]2 (R ) Me, 4; R ) Ph, 5). When the
reaction is monitored for R ) Me, only [PdCl(COMe)(SMe2)]2 and the final carbene 4 are observed,
suggesting that the transfer and insertion of the carbonyl group are faster than the carbene transmetalation.
Although CO insertion into M-X bonds is thermodynamically excluded in many systems (e.g., in
M-halogen and M-C6F5 bonds), this study warns of the fact that CO is easily available when
[M(CO)5(carbene)] complexes are used as carbene sources, whether for stoichiometric or for catalytic
reactions. This CO could react with the intermediates or the products in these reactions.
synthesize NHC metal carbenes,9 to prepare palladium monoam-
ino carbenes,10,11 and to generate unstable Pd alkoxycarbenes.10,12
Thus, [M(CO)5(carbene)] complexes (M ) group 6) have been
used by Sierra et al. in Pd-catalyzed reactions8,13 and by
Barluenga and Aumann in Ni-,14 Rh-,15 and Cu-catalyzed15b,16
cyclizations.
Introduction
Over many years metal carbene complexes have been used
in many selective processes.1 Most reactions use stable group
6 metal complexes containing alkoxycarbenes (C(OR1)R2);2
others (e.g., for cyclopropanation reactions) use in situ generated
metal carbene complexes of nonstabilized carbenes (CR1R2).1,3
In the past decade, metal complexes of stable N,N-heterocyclic
carbenes (NHCs) have become extremely popular in catalysis.4
Metal carbene complexes are accessible by a number of
methods, including coordination of stable carbenes4,5 and
others.6 The use of diazo derivatives and transmetalation from
other easily prepared metal carbenes7,8 can be applied to
generate carbenes in catalytic cycles. In this context the carbene
complexes derived from group 6 carbonyls have been used to
In the course of our studies of the migratory insertion reaction
in palladium carbenes,10,11 we attempted to prepare some
[PdRX{C(NR1 )R2}L] (R ) Me, Ph) complexes by carbene
2
transmetalation from [W(CO)5{C(NR1 )R2}] and we have found
2
out that carbene transfer occurs concurrently with carbonyl
insertion into the Pd-R bond. The increasing use of [M(CO)5-
(7) The first reported carbene transmetalation involved a molybdenum
methoxycarbene to form an iron and, presumably, a Ni carbene Fischer,
E. O.; Beck, H.-J. Angew. Chem., Int. Ed. Engl. 1970, 9, 72–73.
(8) Go´mez-Gallego, M.; Manchen˜o, M. J.; Sierra, M. A. Acc. Chem.
Res. 2005, 38, 44–53.
* To whom correspondence should be addressed. E-mail: albeniz@qi.uva.es
(A.C.A.); espinet@qi.uva.es.
(1) Zaragoza-Do¨rwald, F. Metal Carbenes in Organic Synthesis; Wiley-
VCH: Weinheim, Germany, 1999.
(9) (a) Liu, S.-T.; Reddy, K. R. Chem. Soc. ReV. 1999, 28, 315–322.
(b) Ku, R.-Z.; Huang, J.-C.; Cho, J.-Y.; Kiang, F.-M.; Reddy, K. R.; Chen,
Y.-C.; Lee, K.-J.; Lee, J.-H.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T. Organo-
metallics 1999, 18, 2145–2154. (c) Wang, H. M. J.; Lin, I. J. B.
Organometallics 1998, 17, 972–975. (d) Liu, S.-T.; Hsieh, T.-Y.; Lee, G.-
H.; Peng, S.-M. Organometallics 1998, 17, 993–995.
(10) (a) Albe´niz, A. C.; Espinet, P.; Manrique, R.; Pe´rez-Mateo, A.
Chem. Eur. J. 2005, 11, 1565–1573. (b) Albe´niz, A. C.; Espinet, P.;
Manrique, R.; Pe´rez-Mateo, A. Angew. Chem., Int. Ed. 2002, 41, 2363–
2366.
(11) Albe´niz, A. C.; Espinet, P.; Pe´rez-Mateo, A.; Nova, A.; Ujaque,
G. Organometallics 2006, 25, 1293–1297.
(12) A ligand-stabilized Pd alkoxycarbene has been recently isolated
using transmetalation: Lo´pez-Alberca, M. P.; Manchen˜o, M. J.; Ferna´ndez,
I.; Go´mez-Gallego, M.; Sierra, M. A.; Torres, R. Org. Lett. 2007, 9, 1757–
1759.
(2) (a) Barluenga, J.; Santamar´ıa, J.; Toma´s, M. Chem. ReV. 2004, 104,
2259–2283. (b) De Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem.,
Int. Ed. 2000, 39, 3964–4002. (c) Wulff, W. D. Organometallics 1998, 17,
3116–3134. (d) Schwindt, M. A.; Miller, J. R.; Hegedus, L. S. J. Organomet.
Chem. 1991, 413, 143–153. (e) Do¨tz, K. H. Angew. Chem., Int. Ed. Engl.
1984, 23, 587–608.
(3) (a) D´ıaz-Requejo, M. M.; Pe´rez, P. J. J. Organomet. Chem. 2005,
690, 5441–5450. (b) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 5260–5261. (c) Straub, B. F. J. Am. Chem. Soc.
2002, 124, 14195–14201. (d) Rodr´ıguez-Garc´ıa, C.; Oliva, A.; Ortun˜o,
R. M.; Branchadell, V. J. Am. Chem. Soc. 2001, 123, 6157–6163.
(4) (a) Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem.,
Int. Ed. 2007, 46, 2768–2813. (b) Herrmann, W. A. Angew. Chem., Int.
Ed. 2002, 41, 1290–1309.
(5) (a) Enders, E.; Gielen, H. J. Organomet. Chem. 2001, 617-618,
70–80. (b) Weskamp, T.; Bo¨hm, V. P. W.; Herrmann, W. A. J. Organomet.
Chem. 2000, 600, 12–22.
(13) (a) Del Amo, J. C.; Manchen˜o, M. J.; Go´mez-Gallego, M.; Sierra,
M. A. Organometallics 2004, 23, 5021–5029. (b) Sierra, M. A.; Del Amo,
J. C.; Manchen˜o, M. J.; Go´mez-Gallego, M. J. Am. Chem. Soc. 2001, 123,
851–861.
(6) Some examples are as follows. (i) Oxidative addition: (a) Fu¨rstner,
A.; Seidel, G.; Kremzow, D.; Lehmann, C. W. Organometallics 2003, 22,
907–909. (b) Gu¨ndemann, S.; Albrech, M.; Kovacevic, A.; Faller, J. W.;
Crabtree, R. H. Dalton Trans. 2002, 2163–2167(ii) Nucleophilic attack on
coordinated isonitriles: (c) Uso´n, R.; Fornie´s, J.; Espinet, P.; Navarro, R.;
Lalinde, E. Transition Met. Chem. 1984, 9, 277–279. (d) Butler, W. M.;
Enemark, J. H.; Parks, J.; Balch, A. L. Inorg. Chem. 1973, 12, 451–457.
(e) Busetto, L.; Palazzi, A.; Crociani, B.; Belluco, U.; Badley, E. M.; Kilby,
B. J. L.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1972, 1800–1805(iii)
Reaction of electron-rich olefins: (f) Cetinkaya, B.; Dixneuf, P.; Lappert,
M. F. J. Chem. Soc., Dalton Trans. 1974, 1827–1833(iv) Other methods: (g)
Matsumura, N.; Kawano, J.; Fukunishi, N.; Inoue, H. J. Am. Chem. Soc.
1995, 117, 3623–3624.
(14) (a) Barluenga, J.; Vicente, R.; Barrio, P.; Lo´pez, L. A.; Toma´s, M.
J. Am. Chem. Soc. 2004, 126, 5974–5975. (b) Barluenga, J.; Barrio, P.;
´
Lo´pez, L. A.; Toma´s, M.; Garc´ıa-Granda, S.; Alvarez-Ru´a, C. Angew.
Chem., Int. Ed. 2003, 42, 3008–3011.
(15) (a) Aumann, R.; Go¨ttker-Schnetmann, I.; Fro¨hlich, R.; Meyer, O.
Eur. J. Org. Chem. 1999, 2545–2561. (b) Go¨ttker-Schnetmann, I.; Aumann,
R.; Bergander, K. Organometallics 2001, 20, 3574–3581. (c) Barluenga,
´
J.; Vicente, R.; Lo´pez, L. A.; Rubio, E.; Toma´s, M.; Alvarez-Ru´a, C. J. Am.
Chem. Soc. 2004, 126, 470–471.
(16) Barluenga, J.; Lo´pez, L. A.; Lo¨bet, O.; Toma´s, Garc´ıa-Granda, S.;
´
M.; Alvarez-Ru´a, C.; Borge, J. Angew. Chem., Int. Ed. 2001, 40, 3392–
3394.
10.1021/om800358f CCC: $40.75
2008 American Chemical Society
Publication on Web 07/30/2008