Chatterjee et al.
SCHEME 1. Definition of the Backbone Torsion Angles of
the Gpn Residue
1-(aminomethyl)cyclohexaneacetic acid) as a model residue in
the design of hybrid peptides.5 The geminal ꢀ substituents in
Gpn restrict the backbone torsion angles Cꢀ-Cγ (θ1) and CR-Cꢀ
(θ2) to gauche (θ ) (60°) conformations, thereby restricting
the range of energetically feasible conformations (Scheme 1.)5
Despite the limitations placed on θ1 and θ2, hybrid Rγ sequences
containing Gpn have a much wider range of conformational
choices than their RR counterparts. Indeed, several intramo-
lecular hydrogen bond stabilized conformations like the C7
(NH(i)fCO(i)) and C9 (CO(i-1)rNH(i+1), where Gpn is the
ith residue) structures have been characterized at the Gpn
residues in di- and tripeptides.5a One regular structure has been
observed in crystals for Rγ hybrid sequences in the tetrapeptide
Boc-Aib-Gpn-Aib-Gpn-OMe (1).1d This is the Rγ C12 helix
which may be viewed as the expanded hybrid peptide analogue
of the classical 310-helix observed in R peptides.4b,6 The
observation of a consecutive C12 hydrogen-bonded structure,
corresponding to one turn of a regular Rγ C12 helix, in peptide
1 (Figure 1a) prompted us to explore the possibility of an
extension of such a helical structure by introduction of an
additional hydrogen bond donor at the C-terminus (Figure 1b).
FIGURE 1. (a) Molecular conformation of Boc-Aib-Gpn-Aib-Gpn-
OMe (1) determined in crystals.1d (b) Anticipated conformation of Boc-
Aib-Gpn-Aib-Gpn-NHMe (2), stabilized by three consecutive C12
hydrogen bonds. Model is based on the conformation in Figure 1(a)
by fixing Gpn (4) torsion angles to the same value as Gpn (2).
This apparently minor structural modification resulted in the
observation of unexpected structures, providing new insights
into the accessible conformations for Rγ sequences containing
the conformationally constrained Gpn residue. We describe in
this report the conformational characterization of the peptide
Boc-Aib-Gpn-Aib-Gpn-NHMe (2) and extension of the Rγ
segment in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-
Aib-Gpn-Xxx-OMe (Xxx ) Aib (3) and Xxx ) Leu (4)).
Interestingly, 2 crystallized in three different polymorphic forms
permitting characterization of distinctly different backbone
conformations stabilized by intramolecular C7, C9, and C12
hydrogen bonds. An unanticipated C17 hydrogen bond stabilizing
a three-residue γRγ turn has also been observed. Solution NMR
studies support the presence of multiple conformational states
and averaging by exchange effects as revealed by the presence
of distinctive medium range NOEs between backbone NH
protons and selective line broadening. Lengthening of the
polypeptide chain stabilizes the C12 helix as revealed by NMR
studies of the nonapeptides 3 and 4.
(1) (a) Chatterjee, S.; Roy, R. S.; Balaram, P. J. R. Soc. Interface 2006, 4,
587–606. (b) Roy, R. S.; Balaram, P. J. Peptide Res. 2004, 63, 279–289. (c)
Karle, I. L.; Pramanik, A.; Banerjee, A.; Battacharjya, S.; Balaram, P. J. Am.
Chem. Soc. 1997, 119, 9087–9095. (d) Ananda, K.; Vasudev, P. G.; Sengupta,
A.; Raja, K. M. P.; Shamala, N.; Balaram, P. J. Am. Chem. Soc. 2005, 127,
16668–16674. (e) Baldauf, C.; Gunther, R.; Hofmann, H. J. Biopolymers 2006,
84, 408–413. (f) Baldauf, C.; Gunther, R.; Hofmann, H. J. J. Org. Chem. 2006,
71, 1200–1208. (g) Schmitt, M. A.; Choi, H. S.; Guzei, I. A.; Gellman, S. H.
J. Am. Chem. Soc. 2005, 127, 13130–13131. (h) Schmitt, M. A.; Choi, H. S.;
Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 4538–4539.
(2) (a) Rai, R.; Balaram, P. In Foldamers: Structure, Properties and
Applications; Hecht, S., HucI. Eds.; Wiley-VCH Verlag GmbH & Co.: New
York, 2007; pp 147-171. (b) Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado,
W. F. Nature Chem. Biol. 2007, 3, 252–262. (c) Karle, I. L.; Gopi, H. N.;
Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5160–5164. (d) Roy, R. S.;
Gopi, H. N.; Raghothama, S.; Karle, I. L.; Balaram, P. Chem. Eur. J. 2006, 12,
3295–3302.
Results
Crystalline Polymorphs of Peptide 2. Figure 2 illustrates
the observed conformations of peptide 2 in distinct poly-
morphic forms. The relevant backbone torsional angles and
intramolecular hydrogen bond parameters in polymorphs
2a-c are listed in Tables 1 and 2, respectively. The two
molecules in the asymmetric unit of 2a in the space group
P21/c adopt almost identical backbone (mirror image)
conformations, with the Aib-Gpn-Aib segment forming two
consecutive Rγ/γR turns resulting in an incipient C12 helix,
which can be formally considered as a backbone-expanded
analogue of the 310 (C10)-helix.6a,b The C-terminus adopts a
folded conformation resulting in a C17 hydrogen bond
between the Aib (1) CO and methylamide NH groups. The
Aib (1) CO group participates in a bifurcated hydrogen bond
interaction with two donor groups, NHMe and Gpn (4) NH.
The two independent molecules in the asymmetric unit differ
in the orientation of the geminal substituents on the cyclo-
hexane ring of the Gpn (4) residue. Polymorphs 2b and 2c
reveal a completely different backbone conformation. In both
(3) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180. (b) Seebach, D.;
Beck, A. K.; Bierbaum, D. J. Chem. BiodiVersity 2004, 1, 1111–1239. (c)
Seebach, D.; Hook, D. F.; Glattli, A. Biopolymers 2006, 84, 23–37. (d) Cheng,
R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101, 3219–3232. (e)
Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998, 120,
8569–8570. (f) Hanessian, S.; Luo, X.; Schaum, R. Tetrahedron Lett. 1999, 40,
4925–4929. (g) Grotenberg, G. M.; Timmer, M. S. M.; Llamas-Siaz, A. L.;
Verdoes, M.; van der Marel, G. A.; van Raaij, M. J.; Overkleeft, H. S.; Overhand,
M. S. J. Am. Chem. Soc. 2004, 126, 3444–3446.
(4) (a) Prasad, B. V. V.; Balaram, P. CRC Crit. ReV. Biochem. 1984, 16,
307–347. (b) Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747–6756. (c)
Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. ReV. 2001, 101, 3131–
3152. (d) Aravinda, S.; Shamala, N.; Roy, R. S.; Balaram, P. Proc. Indian Acad.
Sci. (Chem. Sci.) 2003, 115, 373–400. (e) Toniolo, C.; Benedetti, E. Macro-
molecules 1991, 24, 4004–4009. (f) Crisma, M.; Formaggio, F.; Toniolo, C.;
Moretto, A. Biopolymers (Peptide Sci.) 2006, 84, 3–12.
(5) (a) Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala,
N.; Balaram, P. J. Am. Chem. Soc. 2007, 129, 4039–4048. (b) Ananda, K.;
Aravinda, S.; Vasudev, P. G.; Raja, K. M. P.; Sivaramakrishnan, H.; Nagarajan,
K.; Shamala, N.; Balaram, P. Curr. Sci. 2003, 85, 1002–1011. (c) Banerjee, A.;
Balaram, P. Curr. Sci. 1997, 73, 1067–1077, and ref 3d.
(6) (a) Donohue, J. Proc. Natl. Acad. Sci. U.S.A. 1953, 39, 470–478. (b)
Toniolo, C.; Benedetti, E. Trends Biochem. Sci. 1991, 16, 350–353. (c) For a
discussion on the relationship between the hydrogen-bonded structures observed
in RR and Rγ segments, see ref 1a.
6596 J. Org. Chem. Vol. 73, No. 17, 2008