L. Jin et al. / Journal of Molecular Catalysis A: Chemical 261 (2007) 262–266
265
was obtained with high yield by prolonging the reaction time
(entries 1 and 5) using 1a or 1e as catalyst.
can be easily introduced into organic molecules at room
temperature.
propylene carbonate
Acknowledgments
We are grateful for the financial support of the Natural Sci-
ence Foundation of China (NSFC QT 20021001) and Natural
Science Foundation of Gansu Province (3ZS041-A25-008).
Porphyrins with different framework were investigated on
this coupling reaction of PO and CO2 (Scheme 1). From the
results shown in Table 3, we found that substituted groups in the
framework of porphyrin influenced the CO2 insertion reaction.
When the catalysts bearing electron-withdrawing groups (1g) or
electron-donating groups (1f and 1h), they tend to give dimin-
effect of substituted groups. We also explored the influence of
CO2 pressure. When the CO2 pressure was reduced from 100
to 15 psi, propylene carbonate was only obtained with 20%
yield (Table 3, entry 5). The concentration of CO2 in propylene
oxide will be reduced when decreased the pressure resulting
in low catalytic activity. This is consistent with literature result
[28].
References
[1] D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux, Acc.
Chem. Res. 37 (2004) 836.
[2] D.J. Darensbourg, M.W. Holtcamp, Coord. Chem. Rev. 153 (1996)
155.
[3] D.R. Moore, M. Cheng, E.B. Lobkovsky, G.W. Coates, Angew. Chem. Int.
Ed. 41 (2002) 2599.
[4] K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F.
Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannanand, E.J. Sorensen,
Nature 367 (1994) 630.
[5] T. Takata, Y. Furusho, K.-I. Murakawa, T. Endo, H. Matsuoka, T. Hirasa,
J. Matsuo, M. Sisido, J. Am. Chem. Soc. 120 (1998) 4530.
[6] H.-T. Chang, K.B. Sharpless, Tetrahedron Lett. 37 (1996) 3219.
[7] N. Takeda, S. Inoue, Bull. Chem. Soc. Jpn. 51 (1978) 3564.
[8] N. Takeda, S. Inoue, Macromol. Chem. 179 (1978) 1377.
[9] T. Aida, Macromolecules 15 (1982) 682.
3.4. The metal effect of M(TPP)X on synthesis of propylene
carbonate
[10] T. Aida, M. Ishikawa, S. Inoue, Macromolecules 19 (1986) 8.
[11] J.H. Jung, M. REE, T. Chang, J. Polym. Sci. Part A: Polym. Chem. 37
(1999) 3329.
[12] T. Aida, S. Inoue, J. Am. Chem. Soc. 105 (1983) 1304.
[13] S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes, Macro-
molecules 33 (2000) 303.
[14] L.M. Stamp, S.A. Mang, A.B. Holmes, K.A. Kinghts, Y.R. de Miguel, I.F.
McConvey, Chem. Commun. (2001) 2502.
[15] A. Baba, T. Nozaka, H. Matsuda, Bull. Chem. Soc. Jpn. 60 (1987)
1552.
Besides these condition screenings, we also selected different
metals as a Lewis acidic center and investigated the catalytic
activity of M(TPP)Cl/PTAT in the coupling reaction of CO2
and propylene oxide (Table 4). It can be seen that the catalytic
activity was in the order of Co > Mn > Ru > Fe. From the results
mentioned above, we concluded that Co(TPP)(Cl)/PTAT system
has higher catalytic activity.
[16] F. Li, C. Xia, F. Xu, W. Sun, G. Chen, Chem. Commun. (2003)
2042.
[17] R.L. Paddock, S.T. Nguyen, J. Am. Chem. Soc. 123 (2001) 11498.
[18] Y. Deng, J. Peng, New J. Chem. 25 (2001) 639.
[19] V. Calo´, A. Nacci, A. Monopoli, A. Fanizzi, Org. Lett. 4 (2002)
2561.
[20] X. Lu, X. Feng, R. He, Appl. Catal. Part A: Gen. 234 (2002) 25.
[21] W.N. Sit, S.M. Ng, K.Y. Kwong, C.P. Lau, J. Org. Chem. 70 (2005)
8583.
[22] J.-L. Jiang, F. Gao, R. Hua, X. Qiu, J. Org. Chem. 70 (2005) 381.
[23] H.B. Xie, S.H. Li, S.B. Zhang, J. Mol. Catal. A: Chem. 250 (2006) 30.
[24] X.-B. Lu, Y.-J. Zhang, K. Jin, L.-M. Luo, H. Wang, J. Catal. 227 (2004)
537.
[25] X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H.
Wang, R. Zhang, J. Am. Chem. Soc. 126 (2004) 3732.
[26] X.-B. Lu, Y.-J. Zhang, B. Liang, X. Li, H. Wang, J. Mol. Catal. A: Chem.
210 (2004) 31.
[27] W.J. Kruper, D.V. Dellar, J. Org. Chem. 60 (1995) 725.
[28] R.L. Paddock, Y. Hiyama, J.M. McKay, S.T. Nguyen, Tetrahedron Lett. 45
(2004) 2023.
3.5. The cyclic carbonate synthesis from CO2 with various
epoxides catalyzed by Co(TPP)(OAc)/PTAT
Under the optimized reaction condition, we examined the
reactions of other terminal epoxides with carbon dioxide.
The results are summarized in Table 5. Co(TPP)(OAc)/PTAT
was found to be active to other terminal epoxides, producing
the responding cyclic carbonates with high yield and TOF.
However, styrene oxide seemed to give relatively low activity
(entry 6) due to precipitation of solid product. In comparison
with that, the phenoxypropylene oxide (entry 5) and the
cyclohexenyl-(1,1ꢀ-bisglycidyl)-4,5-dicarboxylic ester (entry
7) were took the coupling reaction with some dilute solvent
respectively. To a solution of dodecene oxide, some diluter DMF
was added for reducing the viscousness and enhancing the yield
(entry 3).
[29] R. Srivastsva, T.H. Bennur, D. Srinivas, J. Mol. Catal. A: Chem. 226 (2005)
199.
4. Conclusions
[30] A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assoup, L. Kor-
sakoff, J. Org. Chem. 32 (1967) 476.
[31] E. Tsuchida, T. Komatsu, E. Hasegawa, H. Nishide, J. Chem. Soc. Dalton
Trans. 9 (1990) 2713.
[32] J.P. Collman, J. Am. Chem. Soc. 97 (1975) 1427.
[33] A.D. Alder, F.R. Long, F. Kampas, J. Kim, J. Inorg. Nucl. Chem. 32 (1970)
2443.
In summary, we developed a series of novel and high
efficient bifunctional catalysts, M(TPP)X/PTAT, in which
Co(TPP)(OAc)/PTAT is one of the best catalyst system for
the coupling reaction of carbon dioxide and various epoxides
yielding relevant cyclic carbonates by which carbon dioxide