ing this idea to generate water-soluble cytotoxic agents. Since
E to Z isomerization is done photochemically, our work opens
up the possibility of enhancing the DNA-cleaving efficiency of
the C2-symmetric enediynes via photoirradiation.
A. B. thanks DST, Government of India for a research
grant. D. M. and M. K. are grateful to CSIR, Government of
India for a senior research fellowship. We are also grateful to
Prof. A. K. Ghosh and Prof. A. K. Das, Biotechnology
Department for their help in densitometric measurements
and MM2 calculations. The Department of Science and
Technology, Govt. of India, is thanked for the CCD-X-ray
(under FIST) and 400 MHz NMR facilities (under IRPHA).
Notes and references
1. J. Nicolle, Science, 1965, 38, 38.
2. D. Lucet, T. Le Gall and C. Mioskowski, Angew. Chem., Int. Ed.,
1998, 37, 2580.
3. J. W. Mellons, Nat. Med., 1996, 2, 274.
4. C. Kessler and V. Mamta, Gene, 1990, 92, 1.
5. R. Marmorstein, M. Carey, M. Plastin and S. C. Harrison,
Nature, 1992, 356, 408.
6. D. Ranganathan, R. K. Mishra, B. K. Patel and N. K. Vaish,
Proc. Indian Acad. Sci., 1994, 106, 1071.
Fig. 3 pBR322 DNA cleavage experiment of compounds 1a–1e/
2a–2e; For A–H: lane 1: control DNA in TAE buffer (pH 8, 7 mL)
+ CH3CN (5 mL); lane 2: DNA in TAE buffer (pH 8, 7 mL) + E
isomer (0.02 mM) in CH3CN (5 mL); lane 3: DNA in TAE buffer
(pH 8, 7 mL) + Z-isomer (0.02 mM) in CH3CN (5 mL).
7. (a) S. A. Strobel and P. B. Dervan, Science, 1990, 249, 73;
(b) D. R. Corey, D. Pei and P. G. Schultz, Biochemistry, 1990,
28, 8277; (c) M. V. Keck and S. J. Lippard, J. Am. Chem. Soc.,
1992, 114, 3386; (d) A. Sitalni, E. C. Long, A. M. Pyle and
J. K. Barton, J. Am. Chem. Soc., 1992, 114, 2303.
8. (a) A. Basak, S. M. Mandal and S. S. Bag, Chem. Rev., 2003, 103,
4077; (b) M. E. Maier, F. Bobe and A. J. Niestroj, Eur. J. Org.
Chem., 1999, 1; (c) K. C. Nicolaou and A. L. Smith, Modern
Acetylene Chemistry, ed. P. J. Stang and F Diederich, VCH,
Weinheim, 1995, p. 203.
conditions. It may be noted that the isolated non-benzenoid
enediyne 8 is a much inferior cleaving agent as compared to 1c/
2c; the extent of cleavage even after 12 h incubation was much
less (only 50% as compared to 85%). It also failed to show
formation of any linear form under similar conditions.17 The
non-C2-symmetric molecules 1d/2d and 1e/2e have been found
to be very poor DNA-cleavers. All these point to the impor-
tance of having an azobenzene endowed with C2-symmetry in
the design.
9. (a) K. C. Nicolaou and W. M. Dai, Angew. Chem., Int. Ed. Engl.,
1991, 30, 1387; (b) B. Konig, Eur. J. Org. Chem., 2000, 381;
¨
(c) H. Lhermite and D. Grierson, Contemp. Org. Synth., 1996, 3,
93; (d) D. S. Rawat and J. M. Zaleski, Synlett, 2004, 393.
10. M. Kar and A. Basak, Chem. Rev., 2007, 14, 2861.
11. (a) S. Shinkai, T. Minami, Y. Kasano and O. Manabe, J. Am.
Chem. Soc., 1983, 105, 1851; (b) A. Srivastava, S. Ghorai,
S. A. Bhattacharya and S. Bhattacharya, J. Org. Chem., 2005,
70, 6574.
The DNA-binding studies by absorption titrations invol-
ving addition of a solution of calf thymus DNA to a fixed
concentration of the probe18 indicated higher degree of hypo-
chromism19 for the Z-isomer 2a as compared to 1a. The
binding constant (using the Benesi–Hildebrand equation)
revealed greater binding affinity for enediyne 2a (2.5ꢁ as
compared to 1a). Thus the higher DNA-cleavage efficiency
for the Z-isomer is correlated to its binding efficiency.
Thus, we have successfully designed and synthesized azo-
benzene-based enediyne–amino acid C2-symmetric hybrids. A
new way of modulating the biological activity of this class of
molecules by introducing a symmetry element like C2 has been
firmly established. Future research will concentrate on exploit-
12. W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag,
New York, 1984, p. 261.
13. A. Basak, S. Mandal, A. K. Das and V. Bertolasi, Bioorg. Med.
Chem. Lett., 2002, 12, 873.
14. M. Bose, D. Groff, J. Xie, E. Brustad and P. G. Schultz, J. Am.
Chem. Soc., 2006, 128, 388.
15. R. G. Bergman, Acc. Chem. Res., 1973, 6, 25.
16. (a) R. H. Grubbs and D. Kratz, Chem. Ber., 1993, 126, 149;
(b) B. Konig and H. Rutters, Tetrahedron Lett., 1994, 35, 3501.
¨
17. (a) A. Basak, H. M. Bdour, J. C. Shain, S. Mandal, K. Rudra and
S. Nag, Bioorg. Med. Chem. Lett., 2000, 10, 4354; (b) A. Basak,
U. K. Khamrai and J. C. Shain, Tetrahedron Lett., 1997, 38, 6067.
18. S. S. Mandal, U. Varshney and S. Bhattacharya, Bioconjugate
Chem., 1997, 8, 798.
19. A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar,
N. J. Turro and J. K. Barton, J. Am. Chem. Soc., 1989, 111, 3051.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3067–3069 | 3069