4850
A. J. Clark, P. Wilson / Tetrahedron Letters 49 (2008) 4848–4850
ceeded with an order of magnitude less catalyst (0.1 mol %). It is
likely that for the even more reactive trichloroacetyl derivatives,
even lower catalyst loadings will be possible. By applying the AIBN
protocol in conjunction with solid supported atom transfer cata-
lysts,6 it now should be possible to make efficient heterogeneous
catalysts that can be recycled efficiently and re-used (Scheme 2).
Figure 1. Alkene regioisomers produced in ATRC of 7e.
We next turned our attention to the previously reported 5-exo
dig cyclisation of the alkyne 13a.5d This has been reported to be
approximately 100 times slower than for the correponding 5-exo
trig cyclisation of 7a. Indeed, cyclisation under the conditions high-
lighted in grey in Table 1 (24 h) proceeded to only give a 33% and
9% combined yield of the expected products 14a and 15a with CuBr
or CuBr2, respectively. Switching to toluene at reflux allowed the
reactions to proceed at a reasonable rate (Table 4, entries 3 and
4). The same pattern of reactivity was observed with the N-benzyl
analogue 13b. The ratio of the atom transfer products 14 to re-
duced products 15 has been reported to be solvent and ligand
dependent and so the variation in the ratio between CH2Cl2 and
toluene was expected.4c Vinyl bromides 14a–b were produced as
a 9:1 mixture of E:Z isomers in all cases. The ratio was determined
by comparison to authentic samples.4c
Finally, we investigated the cyclisation of the secondary bro-
mide 16. Cyclisation rates of secondary bromides are known to
be slower than the corresponding tertiary bromide derivatives,
presumably due to the Thorpe–Ingold effect.4c Heating 16 in tolu-
ene at reflux under the standard conditions determined for sub-
strate 3 (Table 1, entry 8) produced a 90% yield of the expected
atom transfer product as a 4:1 mixture of diastereomers (de
60%). The major diastereomer was identified as 17a based upon
comparison of spectral details with authentic samples.4c The dia-
stereoselectivity was slightly eroded compared to that reported
(de 76%) for the cyclisation of 16 with 30 mol % Cu(1)Br at rt.4c
In conclusion, we have shown that it is possible to mediate a
range of relatively slow 5-exo trig and 5-exo dig atom transfer
radical cyclisations of tertiary and secondary bromoacetamides
using 1 mol % Cu(2)Br in conjunction with 10 mol % AIBN as an
additive. This allows for a 30-fold reduction in the amount of metal
catalyst previously required to mediate these reactions efficiently.
This coupled with the fact that the reactions can be mediated with
either CuBr or the more oxidatively stable CuBr2 without the need
for an inert atmosphere should make the atom transfer radical cyc-
lisation approach more attractive for use in industrial applications.
Cyclisation of the more reactive N-Ts compounds (e.g., 7b) pro-
Scheme 2. Cyclisation of secondary bromide 16.
Acknowledgement
We thank the EPSRC for a DTA studentship (PW).
References and notes
1. Clark, A. J. Chem. Soc. Rev. 2002, 31, 1.
2. (a) Nagashima, H.; Ozaki, N.; Ishii, M.; Seki, K.; Washiyama, M.; Itoh, K. J. Org.
Chem. 1993, 58, 464; (b) Iwamatsu, S.; Matsubara, K.; Nagashima, H. J. Org.
Chem. 1999, 64, 9625; (c) Nagashima, H.; Isono, Y.; Iwamatsu, S. J. Org. Chem.
2001, 66, 315; (d) Udding, J. H.; Tuijp, C. J. M.; van Zanden, M. N. A.; Hiemstra,
H.; W.N.Speckamp J. Org. Chem. 1994, 59, 1993; (e) Bryans, J. S.; Chessum, N. E.
A.; Huther, N.; Parsons, A. F.; Ghelfi, F. Tetrahedron 2003, 59, 6221; (f) Felluga,
F.; Forzato, C.; Ghelfi, F.; Nitti, P.; Pitacco, G.; Pagnoni, U. M.; Roncaglia, F.
Tetrahedron: Asymmetry 2007, 18, 527.
3. (a) Benedetti, M.; Forti, L.; Ghelfi, F.; Pagnoni, U. M.; Ronzoni, R. Tetrahedron
1997, 41, 14031; (b) Ghelfi, F.; Bellesia, F.; Forti, L.; Ghirardini, G.; Grandi, R.;
Libertini, E.; Montemaggi, M. C.; Pagnoni, U. M.; Pinetti, A.; De Buyck, L.;
Parsons, A. F. Tetrahedron 1999, 55, 5839; (c) Ghelfi, F.; Parsons, A. F. J. Org.
Chem. 2000, 65, 6249; (d) De Buyck, L.; Cagnoli, R.; Ghelfi, F.; Merighi, G.;
Mucci, A.; Pagnoni, U. M.; Parsons, A. F. Synthesis 2004, 10, 1680; (e) Bellesia, F.;
Daniel, C.; De Buyck, L.; Galeazzi, R.; Ghelfi, F.; Mucci, A.; Orean, M.; Pagnoni, U.
M.; Parsons, A. F.; Roncaglia, F. Tetrahedron 2006, 62, 746.
4. (a) Clark, A. J.; Dell, C. P.; Ellard, J. M.; Hunt, N. A.; McDonagh, J. P. Tetrahedron
Lett 1999, 40, 8619; (b) Clark, A. J.; Filik, R. P.; Thomas, G. H. Tetrahedron Lett.
1999, 40, 4885; (c) Clark, A. J.; De Campo, F.; Deeth, R. J.; Filik, R. P.; Gatard, S.;
Hunt, N. A.; Lastécouères, D.; Thomas, G. H.; Verlac, J.-B.; Wongtap, H. J. Chem.
Soc., Perkin Trans. 1 2000, 671.
5. (a) De Campo, F.; Lastécouères, D.; Verlac, J.-B. Chem. Commun. 1998, 2117; (b)
Clark, A. J.; Dell, C. P.; McDonagh, J. P. C.R. Acad. Sci. Ser IIC: Chim. 2001, 4, 575;
(c) Clark, A. J.; Battle, G. M.; Bridge, A. Tetrahedron Lett. 2001, 42, 4409; (d)
Clark, A. J.; Battle, G. M.; Bridge, A. Tetrahedron Lett. 2001, 42, 1999; (e) Clark, A.
J.; Geden, J. V.; Thom, S.; Wilson, P. J. Org. Chem. 2007, 72, 5923.
6. (a) Clark, A. J.; Filik, R. P.; Haddleton, D. M.; Radique, A.; Saunders, C. J.; Smith,
M. E.; Thomas, G. S. J. Org. Chem. 1999, 64, 8954; (b) Clark, A. J.; Gedev, J. V.;
Thom, S. J. Org. Chem. 2006, 71, 1471.
7. Matyjasewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W.
A.; Tsarevsky, N. V. Proc. Natl. Acad. Sci. U.S.A. 2006, 45, 4482.
8. Jakubowski, W.; Matyjasewski, K. Macromolecules 2006, 39, 39.
9. (a) Eckenhoff, W. T.; Pintauer, T. Inorg. Chem. 2007, 46, 5844; (b) Eckenhoff, W.
T.; Garrity, S. T.; Pintauer, T. Eur. J. Inorg. Chem. 2008, 563.
Table 4
5-Exo dig cyclisation of compounds 13a–b
10.
A
typical procedure is illustrated for entry 4, Table 1. N-Allyl-N-
(phenylmethyl)-N-2-bromo-2-methylpropanamide was dissolved in dry
3
CH2Cl2 at room temperature (123 mg, 0.42 mmol in 2 ml, 0.21 M). AIBN
(7 mg, 0.042 mmol) was added followed by a 0.01 M solution of CuBr/TPA in
dry CH2Cl2 (0.42 ml, 0.0042 mmol, final concentration of 3 0.17 M) solution
and the mixture was heated at reflux for 6 h. The mixture was allowed to cool
then passed through a silica plug and washed with CH2Cl2 (2 Â 50 ml). The
solvent was removed in vacuo to yield the crude product which was purified by
flash chromatography, 9:1 pet ether/EtOAc, to yield 3,3-dimethyl-4-
bromomethyl-1-(phenylmethyl)-pyrrolidin-2-one
4
(103 mg, 0.35 mmol,
Entry
1
Comp
Temp (°C)
Solvent
CH2Cl2
Cu Source
CuBr
Ratio 14a:15
Yieldb (%)
33
84%). Data for 4: Rf (3:1 petrol/EtOAc) 0.30; mmax 2964, 2929, 1684, 1427,
1269, 699 cmÀ1; dH (300 MHz, CDCl3) 7.29 (5H, m), 4.52 (1H, d, 14.6 Hz), 4.35
(1H, d, 14.6 Hz), 3.46 (1H, dd, 10.0, 4.8 Hz), 3.35 (1H, dd, 10.0, 7.5 Hz), 3.22 (1H,
app t, 10.0 Hz), 2.88 (1H, app t, 10.0 Hz), 2.40 (1H, m), 1.24 (3H, s), 0.99 (3H, s);
dC (75.5 MHz, CDCl3) 178.5, 136.3, 128.8 (Â2), 128.1 (Â2), 127.7, 48.9, 46.7,
46.1, 44.0, 31.5, 24.3, 19.6; ESI [Na+] found 318.0464, Na+C14H18NO79Br
requires 318.0469.
13a
50
1:2
2
3
4
5
6
13a
13a
13a
13b
13b
50
CH2Cl2
CuBr2
CuBr
CuBr2
CuBr
CuBr
2:3
1:1
1:1
3:2
1:1
9
110
110
50
Toluene
Toluene
CH2Cl2
67
80
30
51
11. De Buyck, L.; Forzato, C.; Ghelfi, F.; Mucci, A.; Nitti, P.; Pagnoni, U. M.; Parsons,
A. F.; Pitacco, G.; Roncaglia, F. Tetrahedron Lett. 2006, 62, 746.
12. Clark, A. J.; Battle, G. M.; Heming, A. M.; Haddleton, D. M.; Bridge, A.
Tetrahedron Lett. 2001, 41, 2003.
110
Toluene
a
9:1 mixture of E:Z isomers.
Remaining mass balance is recovered starting material.
b