C O M M U N I C A T I O N S
range between -0.2 and +0.8 V at a scan rate of 100 mV s-1) for
the first and second oxidization peaks16 of the TTF unit, the former
reveals that the first oxidization peak for the [2]rotaxane shifts
dramatically to +0.32 V, whereas the second oxidization peak at
+0.55 V is very similar to that observed for the dumbbell. These
observations support those obtained from UV-vis spectroscopy,
that is, the R-CD ring moves away from the TTF unit in the
[2]rotaxane just as soon as it is oxidized to the TTF•+ radical cation.
In the reducing cycle, the first reduction peaks of the TTF2+ dication
at +0.46 and +0.48 V for 3 and 6, respectively, are almost identical.
The fact that the separation between the second reduction peaks
for 3 and 6 is 0.14 V seems to suggest that the R-CD ring is already
close enough to the TTF unit in the [2]rotaxane to influence the
reduction of the TTF•+ radical cation back its neutral form.17 The
R-CD ring might also be facilitating the desolvation of the TTF•+
radical cation in aqueous solution.18
In a nutshell, we have demonstrated the operation of a redox-
switchable R-CD-based [2]rotaxane using both spectroscopic and
electrochemical probes. The R-CD ring in the [2]rotaxane moves
between a TTF unit, the more preferred19 station, and a triazole
ring system, the less preferred19 station, under redox control. This
dynamic property has consequences for the design, synthesis, and
fabrication of nanoscale systems and devices. These findings have
implications for the production of mechanized nanoparticles5 that
can be used for drug delivery where the stimulus is a unique redox
state often present within diseased cells but not in healthy cells.
(7) (a) Nepogodiev, S. A.; Stoddart, J. F. Chem. ReV. 1998, 98, 1959–1976.
(b) Raymo, F. M.; Stoddart, J. F. Chem. ReV. 1999, 99, 1643–1664. (c)
Harada, A. Acc. Chem. Res. 2001, 34, 456–464. (d) Easton, C. J.; Lincoln,
S. F.; Barr, L.; Onagi, H. Chem.sEur. J. 2004, 10, 3120–3128. (e) Wenz,
G.; Han, B.-H.; Mu¨ller, A. Chem. ReV. 2006, 106, 782–817. (f) Liu, Y.;
Chen, Y. Acc. Chem. Res. 2006, 39, 681–691. (g) Frampton, M. J.;
Anderson, H. L. Angew. Chem., Int. Ed. 2007, 46, 1028–1064.
(8) (a) Isnin, R.; Kaifer, A. E. J. Am. Chem. Soc. 1991, 113, 8188–8190. (b)
Stanier, C. A.; Alderman, S. J.; Claridge, T. D. W.; Anderson, H. L. Angew.
Chem., Int. Ed. 2002, 41, 1769–1772. (c) Wang, Q.-C.; Qu, D.-H.; Ren,
J.; Chen, K.; Tian, H. Angew. Chem., Int. Ed. 2004, 43, 2661–2665. (d)
Nelson, A.; Belitsky, J. M.; Vidal, S.; Joiner, C. S.; Baum, L. G.; Stoddart,
J. F. J. Am. Chem. Soc. 2004, 126, 11914–11922. (e) Nijhuis, C. A.;
Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126, 12266–12267.
(f) Oshikiri, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem.
Soc. 2005, 127, 12186–12187. (g) Murakami, H.; Kawabuchi, A.; Matsu-
moto, R.; Ido, T.; Nakashima, N. J. Am. Chem. Soc. 2005, 127, 15891–
15899. (h) Park, J. S.; Wilson, J. N.; Hardcastle, K. I.; Bunz, U. H. F.;
Srinivasarao, M. J. Am. Chem. Soc. 2006, 128, 7714–7715. (i) Klotz,
E. J. F.; Claridge, T. D. W.; Anderson, H. L. J. Am. Chem. Soc. 2006,
128, 15374–15375. (j) Cheetham, A. G.; Hutchings, M. G.; Claridge,
T. D. W.; Anderson, H. L. Angew. Chem., Int. Ed. 2006, 45, 1596–1599.
(k) Wang, Q.-C.; Ma, X.; Qu, D.-H.; Tian, H. Chem.sEur. J. 2006, 12,
1088–1096. (l) Ma, X.; Wang, Q.-C.; Qu, D.-H.; Xu, Y.; Ji, F.; Tian, H.
AdV. Funct. Mater. 2007, 17, 829–837.
(9) (a) Meyer, C. D.; Joiner, C. S.; Cantrill, S. J.; Stoddart, J. F. Chem. Soc.
ReV. 2007, 36, 1705–1723. (b) Griffiths, K. E.; Stoddart, J. F. Pure Appl.
Chem. 2008, 80, 485–506.
(10) Since the TTF unit has two cis-trans constitutional isomers and the R-CD
ring has a primary and a secondary face, four isomeric [2]rotaxanes can
be, in principle, formed as
a consequence of the dumbbell being
constitutionally unsymmetrical. We have employed an orange cylinder to
represent the R-CD ring in the different isomeric forms of 3, whether it be
a structural formula or a graphical representation. On the basis of the ratio
of two TTF methine proton peaks (Hd and He) in the 1H NMR spectrum
of the [2]rotaxane, we have calculated that the ratio of the cis and trans
TTF units-based constitutional isomers in the [2]rotaxane is ca. 3:2.
(11) (a) Aucagne, V.; Ha¨nni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B.
J. Am. Chem. Soc. 2006, 128, 2186–2187. (b) Dichtel, W. R.; Miljanic´, O.
Acknowledgment. We acknowledge support from the Micro-
electronics Advanced Research Corporation and its Focus Center
Research Program, the Center on Functional Engineered Nano-
Architectonics, and the Center for Nanoscale Innovation for
Defense.
Supporting Information Available: Experimental details and
spectral characterization data. This material is available free of charge
ˇ
S.; Spruell, J. M.; Heath, J. R.; Stoddart, J. F. J. Am. Chem. Soc. 2006,
ˇ
128, 10388–10390. (c) Miljanic´, O. S.; Dichtel, W. R.; Mortezaei, S.;
Stoddart, J. F. Org. Lett. 2006, 8, 4835–4838.
(12) Achiral entities located in chiral environments will produce ICD signal(s)
in the corresponding transition band(s). An empirical rule for the ICD
properties of the cyclodextrin complexes with achiral chromophoric guests
has been proposed: if the transition moment of the guest chromophore is
parallel to the axis of symmetry of cyclodextrin (that is, the principal C6
axis of R-CD), then the sign of the ICD signal for that transition will be
positive, whereas, if the moment axis is aligned perpendicular to the
principal axis, then the sign of ICD will be negative. See:(a) Harata, K.;
Uedaira, H. Bull. Chem. Soc. Jpn. 1975, 48, 375–378. (b) Kajta´r, M.;
Horvath-Toro, C.; Kuthi, E.; Szejtli, J. Acta Chim. Acad. Sci. Hung. 1982,
110, 327–355. (c) Zhang, X.; Nau, W. M. Angew. Chem., Int. Ed. 2000,
39, 544–547.
References
(1) (a) Molecular Switches; Feringa, B. L., Ed.: Wiley-VCH Verlag GmbH:
Weinheim, Germany, 2001. (b) Molecular DeVices and Machines: Concepts
and PerspectiVes for the Nanoworld; Balzani, V., Credi, A., Venturi, M.,
Eds.: Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008.
(13) Since the ICD spectrum of 3 reveals a positive Cotton effect peak around
the absorption band of the TTF unit, we can conclude that the TTF unit is
included in the cavity of the R-CD ring, according to the empirical rule as
outlined in ref 12.
(2) (a) Balzani, V.; Go´mez-Lo´pez, M.; Stoddart, J. F. Acc. Chem. Res. 1998,
31, 405–414. (b) Fujita, M. Acc. Chem. Res. 1999, 32, 53–61. (c) Pease,
A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R.
Acc. Chem. Res. 2001, 34, 433–444. (d) Ballardini, R.; Balzani, V.; Credi,
A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445–455. (e)
Schalley, C. A.; Beizai, K.; Vo¨gtle, F. Acc. Chem. Res. 2001, 34, 465–
476. (f) Collin, J.-P.; Dietrich-Buchecker, C.; Gavin˜a, P.; Jimenez-Molero,
M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477–487. (g) Shinkai, S.;
Ikeda, M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494–
503. (h) Feringa, B. L. Acc. Chem. Res. 2001, 34, 504513. (i) Kinbara, K.;
Aida, T. Chem. ReV. 2005, 105, 1377–1400. (j) Tian, H.; Wang, Q.-C.
Chem. Soc. ReV. 2006, 35, 361–374. (k) Kay, E. R.; Leigh, D. A.; Zerbetto,
F. Angew. Chem., Int. Ed. 2007, 46, 72–191.
(3) (a) Badjic´, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science
2004, 303, 1845–1849. (b) Badjic´, J. D.; Ronconi, C. M.; Stoddart, J. F.;
Balzani, V.; Silvi, S.; Credi, A. J. Am. Chem. Soc. 2006, 128, 1489–1499.
(4) Berna´, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Pe´rez, E. M.;
Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704–710.
(5) (a) Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I.
J. Am. Chem. Soc. 2004, 126, 3370–3371. (b) Nguyen, T. D.; Tseng, H.-
R.; Celestre, P. C.; Flood, A. H.; Liu, Y.; Stoddart, J. F.; Zink, J. I. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 10029–10034. (c) Nguyen, T. D.; Leung,
K. C.-F.; Liong, M.; Pentecost, C. D.; Stoddart, J. F.; Zink, J. I. Org. Lett.
2006, 8, 3363–3366. (d) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-
F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (e)
Angelos, S.; Yang, Y.-W.; Patel, K.; Stoddart, J. F.; Zink, J. I. Angew.
Chem., Int. Ed. 2008, 47, 2222–2226. (f) Patel, K.; Angelos, S.; Dichtel,
W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F. J. Am. Chem.
Soc. 2008, 130, 2382–2383.
(14) Schneider, H.-J.; Hacker, F.; Ru¨diger, V.; Ikeda, H. Chem. ReV. 1998, 98,
1755–1786.
(15) The TTF unit in the dumbbell is partially oxidized to the TTF•+ radical
cation under the current conditions. The absorption of the TTF•+ radical
cation is around 595 nm in the current system. See:(a) Yoshizawa, M.;
Kumazawa, K.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 13456–13457.
(b) Nygaard, S.; Laursen, B. W.; Flood, A. H.; Hansen, C. N.; Jeppesen,
J. O.; Stoddart, J. F. Chem. Commun. 2006, 144–146.
(16) Tseng, H.-R.; Vignon, S. A.; Celestre, P. C.; Perkins, J.; Jeppesen, J. O.;
Di Fabio, A.; Ballardini, R.; Gandolfi, M. T.; Venturi, M.; Balzani, V.;
Stoddart, J. F. Chem.sEur. J. 2004, 10, 155–172.
(17) (a) Le Derf, F.; Mazari, M.; Mercier, N.; Levillain, E.; Richomme, P.;
Becher, J.; Gar´ın, J.; Orduna, J.; Gorgues, A.; Salle´, M. Inorg. Chem. 1999,
38, 6096–6100. (b) Wartelle, C.; Viruela, P. M.; Viruela, R.; Ort´ı, E.;
Sauvage, F. X.; Levillain, E.; Le Derf, F.; Salle´, M. J. Phys. Chem. A 2005,
109, 1188–1195.
(18) With different scan rates (10-500 mV s-1), 3 produces a new peak (see
Figure S9 in the Supporting Information) around +0.44 V at a scan rate of
200 mV s-1, indicating that the R-CD ring does not move away entirely
from the TTF•+ radical cation at higher scan rates. See:(a) Zhao, S.; Luong,
J. H. T. Anal. Chim. Acta 1993, 282, 319–327. (b) Schmidt, P. M.; Brown,
R. S.; Luong, J. H. T. Chem. Eng. Sci. 1995, 50, 1867–1876. (c) Bergamini,
J.-F.; Hapiot, P.; Lorcy, D. J. Electroanal. Chem. 2006, 593, 87–98.
(19) Microcalorimetric titrations have been performed (see the SI) at 298.15 K
in buffer solutions (pH 10) on the mixing of R-CD to (i) a TTF diol and
(ii) a triazole-containg stoppersboth model complexes for the TTF and
triazole recognition sites present in 3 and 6sand yielded Ka values of 856
( 47 and 92 ( 24 M-1, respectively. The order of magnitude difference
in these Ka values equates extremely well with the more stable co-
conformation in 3 being the one where the TTF unit is encircled by the
R-CD ring and with the less stable co-conformation being the one where
the R-CD ring encircles the triazole unit.
(6) (a) Luo, Y.; Collier, C. P.; Jeppesen, J. O.; Nielsen, K. A.; Delonno, E.;
Ho, G.; Perkins, J.; Tseng, H.-R.; Yamamoto, T.; Stoddart, J. F.; Heath,
J. R. ChemPhysChem 2002, 3, 519–525. (b) Green, J. E.; Choi, J. W.;
Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.;
Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath,
J. R. Nature 2007, 445, 414–417.
JA8036146
9
11296 J. AM. CHEM. SOC. VOL. 130, NO. 34, 2008