994
J. S. Yadav et al.
LETTER
(6) (a) Corey, E. J.; Dittami, J. P. J. Am. Chem. Soc. 1985, 107,
256. (b) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am.
Chem. Soc. 1994, 116, 12109.
(7) (a) Barco, A.; Benetti, S.; De Risi, C.; Marchetti, P.; Pollini,
G. P.; Zanirato, V. Tetrahedron: Asymmetry 1998, 9, 2857.
(b) Barton, D. H. R.; Bath, S.; Billington, D. C.; Gero, S. D.;
Quiclet-Sire, B.; Samadi, M. J. Chem. Soc., Perkin Trans. 1
1995, 1551. (c) Bath, S.; Billington, D. C.; Gero, S. D.;
Quiclet-Sire, B.; Samadi, M. J. Chem. Soc., Chem. Commun.
1994, 1495.
(8) For recent works, see: (a) Yadav, J. S.; Prathap, I.; Tadi, B.
P. Tetrahedron Lett. 2006, 47, 3773. (b) Yadav, J. S.;
Srinivas, R.; Sathaiah, K. Tetrahedron Lett. 2006, 47, 1603.
(c) Yadav, J. S.; Raju, A. K.; Rao, P. P.; Rajaiah, G.
Tetrahedron: Asymmetry 2005, 16, 3283. (d) Yadav, J. S.;
Prakash, S. J.; Gangadhar, Y. Tetrahedron: Asymmetry
2005, 16, 2722. (e) Yadav, J. S.; Reddy, M. S.; Prasad, A. R.
Tetrahedron Lett. 2005, 46, 2133.
The allylic alcohol 18 was converted into enone 19 with
iodoxybenzoic acid. One-pot reduction of the a,b-unsat-
urated olefin and deprotection of the benzyl ether was
achieved with Pd(OH)2 under hydrogen atmosphere to
afford the compound 20. A one-carbon Wittig reaction on
the ketone with methyltriphenylphosphonium iodide
yielded olefin 21. Epoxidation of the olefin with MCPBA
afforded the known key intermediate 4.14 This intermedi-
ate has already been converted into ovalcin in a further
few steps as reported earlier by Barton et al.7b Thus we
have accomplished a formal total synthesis of ovalcin.
In conclusion, we have described an efficient formal total
synthesis of ovalcin by a chiron approach. Since all the
reactions are high-yielding, this strategy could be applied
to a multigram-scale synthesis of the key intermediate
which can be derivatized further for synthesis of several
other analogues to probe their biological activities.
(9) Fréchou, C.; Dheilly, L.; Beaupère, D.; Uzan, R.; Demailly,
G. Tetrahedron Lett. 1992, 33, 5067.
(10) Garegg, J.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1
1980, 2866.
Acknowledgment
(11) (a) Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990.
For applications and modified procedures, see: (b) Ferrier,
R. J.; Furneaux, R. H.; Prasit, P.; Tyler, P. C.; Brown, K. L.;
Gainsford, G. J.; Diehl, W. J. Chem. Soc., Perkin Trans. 1
1983, 1621. (c) Ferrier, R. J.; Prasit, P. J. Chem. Soc., Perkin
Trans. 1 1983, 1645. (d) Ferrier, R. J.; Schmidt, P.; Tyler, P.
C. J. Chem. Soc., Perkin Trans. 1 1985, 301. (e) Nicolaou,
K. C.; Duggan, M. E.; Ladduwahetty, T. Tetrahedron Lett.
1984, 25, 2069. (f) Yadav, J. S.; Reddy, B. V. S.; Srinivasa
Reddy, K. Tetrahedron 2003, 59, 5333.
Two of us (S.P. and D.C.B.) thank CSIR, New Delhi for financial
assistance.
References and Notes
(1) (a) Hanahan, D.; Folkman, J. Cell 1996, 86, 353.
(b) Folkman, J. Nature Med. 1995, 1, 27. (c) Folkman, J.;
Klagsbrun, M. Science 1987, 235, 442.
(2) (a) Powell, D.; Skotnicki, J.; Upeslacis, J. Annu. Rep. Med.
Chem. 1997, 32, 161. (b) Giannis, A.; Rübsam, F. Angew.
Chem., Int. Ed. Engl. 1997, 36, 588. (c) Auerbach, W.;
Auerbach, R. Pharmacol. Ther. 1994, 63, 265.
(12) (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
(b) Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org.
Chem. 1979, 44, 4148. (c) Mancuso, A. J.; Huang, S. L.;
Swern, D. J. Org. Chem. 1978, 43, 2480.
(d) Folkman, J. N. Engl. J. Med. 1971, 285, 1182.
(3) (a) Killough, J. H.; Magill, G. B.; Smith, R. C. Science 1952,
115, 71. (b) Katznelson, H.; Jamieson, C. A. Science 1952,
115, 70. (c) McCowen, M. C.; Callender, M. E.; Lawlis, J. F.
Jr. Science 1951, 113, 202. (d) Eble, T. E.; Hanson, F. R.
Antibiot. Chemother. 1951, 1, 54.
(4) (a) Logothetis, C. J.; Wu, K. K.; Finn, L. D.; Daliani, D.;
Figg, W.; Ghaddar, H.; Gutterman, J. U. Clin. Cancer Res.
2001, 7, 1198. (b) Stadler, W. M.; Kuzel, T.; Shapiro, C.;
Sosman, J.; Clark, J.; Vogelzang, N. J. J. Clin. Oncol. 1999,
17, 2541. (c) Dezube, B. J.; Von Roenn, J. H.; Holden-
Wiltse, J.; Cheung, T. W.; Remick, S. C.; Coolwy, T. P.;
Moore, J.; Sommadossi, J. P.; Shriver, S. L.; Suckown, C.
W.; Gill, P. S. J. Clin. Oncol. 1998, 16, 1444. (d) Marui, S.;
Itoh, F.; Kozai, Y.; Sudo, K.; Kishimoto, S. Chem. Pharm.
Bull. 1992, 40, 96. (e) Ingber, D.; Fujita, T.; Kishimoto, S.;
Sudo, K.; Kanamaru, T.; Brem, H.; Folkman, J. Nature
(London) 1990, 348, 555.
(13) Hyldtoft, L.; Madsen, R. J. Am. Chem. Soc. 2000, 122, 8444.
(14) Selected Spectroscopic Data
Compound 4: colorless oil; [a]D –57 (c 2.1 CHCl3), lit7b [a]D
–60.0 (c 1.28, CHCl3). IR (CHCl3): 3458, 1452, 1380, 1247,
1114, 1014, 981 cm–1. 1H NMR (300 MHz, CDCl3): d = 4.30
(s, 1 H), 4.02 (d, J = 9.0 Hz, 1 H), 3.44 (s, 3 H), 3.06 (d,
J = 4.5 Hz, 1 H), 3.03 (d, J = 2.2 Hz, 1 H), 2.57 (d, J = 5.2
Hz, 1 H), 2.23 (td, J = 5.4 Hz, 1 H), 1.99 (br s, 1 H, OH), 1.73
(m, 2 H), 1.35 (m, 1 H), 0.97 (t, 9 H), 0.61 (q, 6 H). 13C NMR
(75 MHz, CDCl3): d = 85.23, 67.52, 66.76, 59.95, 57.71,
50.06, 28.90, 26.20, 6.74, 4.88. MS–FAB: m/z = 260 [M+].
Compound 11: colorless oil; [a]D –13.0 (c 2.5, CHCl3). IR
(CHCl3): 3476, 2934, 1613, 1514, 1458, 1301, 1173, 931,
758 cm–1. 1H NMR (200 MHz, CDCI3): d = 7.22 (d, J = 8.5
Hz, 2 H), 6.82 (d, J = 8.5 Hz, 2 H), 5.96 (m, 1 H), 5.24 (m, 2
H), 4.51 (m, 1 H), 4.43 (d, J = 1.5 Hz, 2 H), 4.17 (dd, J = 3.1,
7.0 Hz, 1 H), 3.77 (s, 1 H), 3.66 (m, 1 H), 3.40 (d, J = 5.4 Hz,
1 H), 2.17 (d, J = 5.4 Hz, 1 H), 1.48 (s, 3 H), 1.35 (s, 3 H).
13C NMR (75 MHz, CDCl3): d = 159.30, 134.08, 130.00,
129.40, 119.45, 113.80, 108.67, 79.01, 68.76, 52.24, 27.18,
24.95. MS–FAB: m/z = 308 [M+].
(5) (a) Sigg, H. P.; Weber, H. P. Helv. Chim. Acta 1968, 51,
1395. (b) Sassa, T.; Kaise, H.; Munakata, K. Agric. Biol.
Chem. 1970, 34, 649. (c) Bollinger, P.; Sigg, H. P.; Weber,
H. P. Helv. Chim. Acta 1973, 56, 78.
Synlett 2007, No. 6, 992–994 © Thieme Stuttgart · New York