4998
F. G. Gatti / Tetrahedron Letters 49 (2008) 4997–4998
a
b
c
d
83%
92%
72%
96%
OH
OH
O
H
H
H
OH
OH
H
H
O
OH
OH
e
5
6
7
8
85%
f
g
1
61%
92%
O
O
H
H
OTMS
10
OTMS
9
Scheme 1. Reagents and conditions: (a) (i) BuLi, t-BuOK, hexane, 0 °C; 4 h; (ii) BrCH2CH@C(CH3)2; ꢀ10 °C, 1 h; (b) TBHP, cat. VO(acac), benzene, rt, 12 h; (c) LiAlH4, THF, 0°C,
1 h; (d) DMP, CH2Cl2; rt, 4 h; (e) TMSCl, CH2Cl2/pyridine (2:1), 0.5 h; (f) (i) LDA, TMSCl, ꢀ78 °C, THF; (ii) DMSO, cat. Pd(OAc)2, 50 °C, O2, 36 h; (g) TBAF, CH3CN, 0.5 h.
of prenylbromide (3-methyl-2-butenylbromide) at ꢀ10 °C gave
yield. The spectral data were in agreement with those already
reported.
dienol 5 (½a 2D5
ꢁ
+19.6 (c 3.7, CHCl3)) in 83% yield.10 Epoxidation of
the latter with tert-butylhydroperoxide (TBHP) in the presence of
a catalytic amount of VO(acac)2 in benzene at room temperature
In summary, (+)-hernandulcin has been enantiospecifically syn-
thesized in seven steps from (+)-neoisopulegol in a 25% overall
yield (18% overall yield from (ꢀ)-isopulegol). This synthetic strat-
egy might be useful for the preparation of other sesquiterpenes
such as 4, which has been isolated in an amount too small to be
tasted as sweeteners.
gave exclusively the diastereoisomer 6 (½a D25
ꢁ
+36.6, c 3.0, CHCl3)
in 92% yield.8,11 Then, 6 was reduced with LiAlH4 in THF at 0 °C
to give the diol 7 in almost quantitative yield as a white solid.
The latter was oxidized with Dess-Martin periodinane (DMP)12 in
CH2Cl2 at room temperature to give ketone 8 (½a D25
ꢀ10.0 (c 1.2,
ꢁ
CHCl3), ½a 2D5
ꢁ
ꢀ9.2 (c 1.0, EtOH), lit. ½a D25
ꢁ
ꢀ14.0 (c 0.11, EtOH)7) in
Acknowledgments
72% yield.
Finally, we investigated a new way to convert ketone 8 to enone
1 avoiding the highly toxic selenium chemistry adopted by Cheon.
First, we tried the iperiodine chemistry, recently developed by
Nicolaou et al. Direct oxidation of 8 to give 1 with o-iodoxybenzoic
acid (IBX) at high temperature (80 °C) in DMSO failed, indeed, after
12 h all the starting material was recovered.13 A more efficient evo-
lution of this new methodology consists in the oxidation of the silyl
Cofin-Murst is acknowledged for financial support. We thank
Perfetti s.p.a. for providing 20 g of (ꢀ)-isopulegol.
References and notes
1. For a review see: Kinghorm, A. D.; Soejarto, D. D. Pure Appl. Chem. 2002, 74,
1169–1179.
2. Compadre, C. M.; Pezzuto, J. M.; Kinghorn, A. D.; Kamath, S. K. Science 1985, 227,
417–419.
3. Kaneda, N.; Lee, I.-S.; Gupta, M. P.; Soejarto, D. D.; Kinghorn, A. D. J. Nat. Prod.
1992, 55, 1136–1141.
4. (a) Ono, M.; Moringa, H.; Masuoka, C.; Ikeda, T.; Okawa, M.; Kinjo, J.; Nohora, T.
Chem. Pharm. Bull. 2005, 53, 1175–1177; (b) Ono, M.; Tsuru, T.; Abe, H.; Eto, S.;
Okawa, M.; Abe, F.; Kinjo, J.; Ikeda, T.; Nohora, T. J. Nat. Prod. 2006, 69, 1417–
1420.
enol ethers by using IBXꢂN-oxide complexes to give the
a,b-unsat-
urated ketones under milder conditions (room temperature) and in
better yields.14 First, the tertiary hydroxyl group of ketone 8 was
protected with chlorotrimethylsilane (TMSCl) in CH2Cl2/pyridine
(2:1) to give 9 (½a D25
ꢁ
ꢀ11.2 (c 1.2, CHCl3), ½a D25
ꢀ14.3 (c 1.3, EtOH),
ꢁ
lit. ½a 2D6
ꢁ
ꢀ16.3 (c 0.12, EtOH)7) in 85% yield. Then, the kinetic silyl
5. (a) Mori, K.; Kato, M. Tetrahedron Lett. 1986, 27, 981–982; (b) Mori, K.; M.Kato
Tetrahedron 1986, 42, 5895–5900.
6. Compadre, C. M.; Hussain, R. A.; Lopez de Compadre, R. L.; Pezzuto, J. M.;
Kinghorn, A. D. Experientia 1988, 44, 447–449.
enol ether was generated by treatment of 9 with lithium di-isopro-
pylamide (LDA) and TMSCl at ꢀ78 °C in THF, and, after standard
work-up, was directly submitted to the oxidation step without
any further purification.
7. (a) Kim, J. H.; Lim, H. J.; Cheon, S. H. Tetrahedron Lett. 2002, 43, 4721–4722; (b)
Kim, J. H.; Lim, H. J.; Cheon, S. H. Tetrahedron 2003, 59, 7501–7507.
8. (a) Friedrich, D.; Bohlmann, F. Tetrahedron 1988, 44, 1369–1392; (b) Kocienski,
P. J.; Pontiroli, A.; Qun, L. J. Chem. Soc., Chem. Commun. 1996, 15, 1743–1744.
9. (a) Akutagawa, S. The main preparations of (ꢀ)-isopulegol are by Takasago
process or enzymatic resolution. In Chirality in Industry; Collins, A. N.,
Sheldrake, G. N., Crosby, J., Eds.; Wiley, 1992. Chapter 16; (b) Serra, S.;
Brenna, E.; Fuganti, C.; Maggioni, F. Tetrahedron: Asymmetry 2003, 14, 3313–
3319.
10. Schlosser, M.; Kotthaus, M. Eur. J. Org. Chem. 1999, 459–462.
11. Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136–6137.
12. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
13. Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002,
124, 2245–2258.
However, treatment of the latter with IBX and 4-methoxy-pyr-
idine-N-oxide (MPO) in DMSO at room temperature gave just trace
of enone 10. In contrast, the oxidation of the silyl enol ether, using
the method of Saegusa–Larock,15 with a catalytic amount of
Pd(OAc)2 (30%, in weight) in DMSO at 50 °C under an oxygen atmo-
sphere, gave enone 10 (½a D25
ꢁ
+7.8 (c 1.1, CHCl3), ½a D25
ꢁ
+9.0 (c 1.2,
EtOH), lit. ½a 2D7
ꢁ
+9.7 (c 0.14, EtOH)7) in 61% yield (over the two
steps).
Finally, the cleavage of the silyl protective group was accom-
plished by treatment of 10 with tetra-n-butylammonium fluoride
(TBAF) in MeCN at room temperature to give (+)-hernandulcin 1
14. Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem., Int.
Ed. 2002, 41, 996–1000.
15. (a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013; (b) Larock, R.
C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett. 1995, 36,
2423–2426.
(½a 2D5
ꢁ
104.0 (c 0.8, EtOH), lit. ½a D25
ꢁ
+109 (c 0.11, EtOH),2 lit. ½a D20
ꢁ
+122 (c 0.111, EtOH),5 lit. ½a D26
ꢁ
+110.5 (c 0.11, EtOH)7) in 92%