A. Hamze et al. / Tetrahedron Letters 49 (2008) 2429–2431
2431
2. For a review, see: (a) Trost, B. M.; Ball, Z. T. Synthesis 2005, 853–887;
functionalized terminal alkynes (Table 1). para-Substituted
arylalkynes 1b–f were cleanly hydrosilylated with Et3SiH in
the presence of the PtCl2/Xphos couple to their corres-
ponding b-(E)-adducts with excellent yields whatever is
the nature (electron donating or electron withdrawing
group) of the substituent (entries 2–6). Replacement of
Et3SiH by (EtO)3SiH resulted in similar yields and b-(E)-
selectivities (entries 7 and 8) except in the case of arylalkyne
1d with a para electron withdrawing group (entry 9). For-
tunately, we were pleased to observe that the replacement
of (EtO)3SiH by HSiMe2OEt led to b-(E) vinylsilane 2j
with an excellent regioselectivity (entry 10).
With the ortho-substituted alkyne 1g, again a total b-
regiocontrol was observed with either Et3SiH or (EtO)3SiH
(entries 11 and 12). This result clearly demonstrated that
the regioselectivity of the H–Si bond addition is governed
by steric effects induced by Xphos ligand rather than
ortho-directing effect (ODE) as we previously reported.5,6,8
To support this explanation, the hydrosilylation of ortho
methoxyphenylacetylene was conducted without Xphos
and produced a 38:62 ratio of a:b regioisomers. With
ortho-methoxycarbonyl phenylacetylene 1h, the PtCl2-
catalyzed hydrosilylation was less selective and led to a
regioisomeric mixture with a preference for the b-isomer
(a:b = 19:81, entry 13) indicating that ODE,5 which is
opposed to steric effects, rebalances the isomeric distri-
bution, thus increasing the amounts of a-adduct.
´
(b) De Bo, G.; Berthon-Gelloz, G.; Tenant, B.; Marko, I. Organo-
metallics 2006, 25, 1881–1890; (c) Chauhan, M.; Hauck, B.; Keller, L.;
Boudjouk, P. J. Organomet. Chem. 2002, 645, 1–13; (d) Wu, W.; Li, C.
J. Chem. Commun. 2003, 1668–1669; (e) Wang, F.; Neckers, D. C. J.
Organomet. Chem. 2003, 665, 1–6; (f) Poyatos, M.; Maisse-Franßcois,
A.; Bellemin-Laponnaz, S.; Gade, L. H. Organometallics 2006, 25,
2634–2641; (g) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887–1889; (h)
Trost, B.; Ball, Z. J. Am. Chem. Soc. 2001, 123, 12726–12727; (i) Faller,
J.; D’Alliessi, D. Organometallics 2002, 21, 1743–1746.
3. For recent Rh-catalysis, see: (a) Takeuchi, R.; Nitta, S.; Watanabe, D.
J. Org. Chem. 1995, 60, 3045–3051; (b) Sato, A.; Kinoshita, H.;
Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 2217–2220; (c) Zeng, J.
Y.; Hsieh, M. H.; Lee, H. M. J. Organomet. Chem. 2005, 690, 5662–
5671; (d) Mori, A.; Takahisa, E.; Yamamura, Y.; Kato, T.; Mudalige,
A. P.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T.
Organometallics 2004, 23, 1755–1765; For recent Ir-catalysis, see: (e)
Miyake, Y.; Isomura, E.; Iyoda, M. Chem. Lett. 2006, 35, 836–837. For
recent Co-catalysis, see: (f) Tojo, S.; Isobe, M. Tetrahedron Lett. 2005,
46, 381–384.
4. (a) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073–1076; (b) Itami,
K.; Mitsudo, K.; Nishino, A.; Yoshida, J.-I. J. Org. Chem. 2002, 67,
2645–2652; (c) Aneetha, H.; Wu, W.; Verkade, J. G. Organometallics
2005, 24, 2590–2596.
5. Hamze, A.; Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2005, 7,
5625–5628.
6. Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. Synthesis 2007, 2025–
2036.
7. Typical procedure: Under nitrogen atmosphere, PtCl2 (0.05 mmol) and
Xphos (0.1 mmol) in THF (0.5 mL) were heated at 60 °C for 15 min.
Then, terminal alkyne (1 mmol) and triethylsilane or triethoxysilane
(1.5 mmol) were successively added via a syringe, and the mixture was
stirred at 60 °C for 1 h. After evaporation of the solvent, the residue
was purified by column chromatography to yield b-(E)-vinylsilane 2.
Vinylsilane 2a: Yield: colorless oil, 91%. TLC: Rf 0.5 (Et2O/cyclo-
hexane, 5/95, SiO2). IR (neat, cmÀ1): 2952, 2909, 2874, 2835, 1606,
1570, 1508, 1463, 1441, 1416, 1378, 1332, 1303, 1294, 1250, 1171, 1106,
1037, 1014, 986, 843, 789, 749, 717. 1H NMR (300 MHz, CDCl3): d
0.57 (q, 6H, J = 7.8 Hz), 0.90 (t, 9H, J = 7.8 Hz), 3.72 (s, 3H), 6.17 (d,
1H, J = 19.3 Hz), 6.70–6.82 (m, 3H), 7.30 (d, 2H, J = 8.7 Hz). 13C
NMR (75 MHz, CDCl3): d 3.7 (3CH2), 7.6 (3CH3), 55.4 (OCH3), 114.0
(2CH), 123.1 (CH), 127.6 (2CH), 131.7 (C), 144.3 (CH), 159.6 (C). MS
(ESI): 248 (M+). Anal. Calcd for C15H24OSi (248.44): C, 72.52; H,
9.74. Found: C, 72.48; H, 9.82.
In conclusion, we have established that PtCl2/Xphos is
an efficient catalyst system for the hydrosilylation of func-
tionalized terminal alkynes with various silanes. This quite
simple procedure is characterized by functional group com-
patibility and a good generality. Additionally, our results
demonstrated that commercially available and air-stable
Xphos ligand associated to the PtCl2 catalyst constitutes
an attractive catalytic system for the univocal synthesis of
b-(E)-vinylsilanes from terminal arylalkynes and should
find many applications in organic synthesis.
Vinylsiloxane 2g: Yield: yellow oil, 65%; ratio a:b (2/98 of isomers).
TLC: Rf 0.50 (Et2O/cyclohexane, 30/70, SiO2). IR (neat, cmÀ1): 3288,
2974, 2891, 2883, 1606, 1572, 1508, 1465, 1442, 1418, 1390, 1293, 1250,
Acknowledgment
1
1169, 1099, 1071, 1032, 994, 956, 832, 797, 776, 748, 709, 685, 640. H
NMR (300 MHz, CDCl3): d 1.20 (t, 9H, J = 7.0 Hz), 3.72 (s, 3H), 3.80
(q, 6H, J = 7.0 Hz), 5.92 (d, 1H, J = 19.5 Hz), 6.80 (d, 2H, J = 8.3 Hz),
7.08 (d, 1H, J = 19.5 Hz), 7.34 (d, 2H, J = 8.3 Hz). 13C NMR
(75 MHz, CDCl3): d 18.3 (3CH3), 55.3 (3CH2), 58.7 (OCH3), 113.9
(2CH), 114.7 (CH), 128.3 (2CH), 130.6 (C), 133.7 (CH), 160.3 (C). MS
(ESI): 319 (M+Na)+. Anal. Calcd for C15H24O4Si (219.40): C, 60.78;
H, 8.16. Found: C, 60.65; H, 8.15.
The CNRS is gratefully acknowledged for financial sup-
port of this research.
References and notes
1. (a) Wang, H. W.; Cheng, Y. J.; Chen, C. H.; Lim, T. S.; Fann, W.; Lin,
C. L.; Chang, Y. P.; Lin, K. C.; Luh, T. Y. Macromolecules 2007, 40,
2666–2671; (b) Nicolaou, K. C.; Nold, A. L.; Milbum, R. R.;
Schindler, C. S.; Cole, K. P.; Yamaguchi, J. J. Am. Chem. Soc. 2007,
8. (a) Liron, F.; Le Garrec, P.; Alami, M. Synlett 1999, 246–248; (b)
Alami, M.; Liron, F.; Gervais, M.; Peyrat, J. F.; Brion, J. D. Angew.
Chem., Int. Ed. 2002, 41, 1578–1580; (c) Liron, F.; Gervais, M.; Peyrat,
J.-F.; Alami, M.; Brion, J.-D. Tetrahedron Lett. 2003, 44, 2789–2794.
For the hydrostannation of enynes and related compounds see: (d)
Alami, M.; Ferri, F. Synlett 1996, 755–756; (e) Ferri, F.; Alami, M.
Tetrahedron Lett. 1996, 37, 7971–7974; (f) Bujard, M.; Ferri, F.; Alami,
M. Tetrahedron Lett. 1998, 39, 4243–4246; (g) Hamze, A.; Provot, O.;
Brion, J.-D.; Alami, M. J. Org. Chem. 2007, 72, 3868–3874.
´
129, 1760–1768; (c) Barbero, A.; Blanco, Y.; Garcıa, C.; Pulido, F. J.
Synthesis 2000, 1223–1228; (d) Lo, M. Y.; Sellinger, A. Synlett 2006,
3009–3012; (e) Denmark, S. E.; Baird, J. D. Chem. Eur. J. 2006, 12,
4954–4963; (f) Katayama, H.; Nagao, M.; Nishimura, T.; Matsui, Y.;
Umeda, K.; Tsuruoka, T.; Nawafune, H.; Ozawa, F. J. Am. Chem.
Soc. 2005, 127, 4350–4353.