J.S. Casas et al. / Polyhedron 27 (2008) 2436–2446
2445
to afford centrosymmetric dimers. These units are now associated
in chains running parallel to crystallographic c (compounds 4 and
6) or a (compound 5) axes (see Fig. 6) through the previously de-
scribed weak intermolecular Hg–S interaction (Table 5).
and 6. These data can be obtained free of charge via www.ccdc.ca-
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk. Supple-
mentary data associated with this article can be found, in the on-
3.2.2. Spectroscopy
As for [HQ]2[Hg(L)], the IR spectra of 4, 5 and 6 do not show the
m
(SH) band and the vibrations of the CO2H group are replaced by
References
bands typical of the carboxylate group. The
D
m[
m
a(CO2ꢀ)– s(CO2ꢀ)]
m
[1] T.W. Clarkson, L. Magos, Crit. Rev. Toxicol. 36 (2006) 609.
[2] R.E. Hoffmeyer, S.P. Singh, C.J. Donan, A.R.S. Ross, R.J. Hughes, I.P. Pickering,
G.N. George, Chem. Res. Toxicol. 19 (2006) 753.
[3] (a) J.P.K. Rooney, Toxicology 234 (2007) 145. and references therein;
(b) J.P.K. Rooney, Toxicology 238 (2007) 216.
values are again typical of a monodentate carboxylate group in-
volved in N–Hꢂ ꢂ ꢂO hydrogen bonds.
The 1H NMR spectra show the typical bands of the diisopropyl-
ammonium cation, lacking signals attributable to SH and COOH.
Furthermore, the spectra show a shift of the C(3)–H signal to higher
field on complexation, suggesting the persistence of the Hg–S bond
in solution. The position of the C(3) signals in each of the 13C NMR
spectra of the complexes again supports S-coordination and the po-
sition of the C(1) signal suggests that the carboxylate group remains
coordinated in solution. Thus, as in the [HQ]2[Hg(L)2] complexes,
the ligand remains S,O-coordinated in solution.
[4] J.G. Melnick, G. Parkin, Science 317 (2007) 225.
[5] K.E. Pitts, A.O. Summers, Biochemistry 41 (2002) 10287.
[6] E. Gopinath, T.C. Bruice, J. Am. Chem. Soc. 109 (1987) 7903.
[7] N.G. Geoge, R.C. Price, J. Gailer, G.A. Buttigieg, M. Bonner Denton, H.H. Harris,
J.J. Pickering, Chem. Res. Toxicol. 17 (2004) 999.
[8] D.N. Kachru, S. Khandelwal, B.L. Sharma, S.K. Tandon, Pharm. Toxicol. 64 (1989)
182.
[9] S. Khandelwal, D.N. Kachru, S.K. Tandon, Biochem. Int. 16 (1988) 869.
[10] W. Henderson, B.K. Nicholson, Inorg. Chim. Acta 357 (2004) 2231.
[11] J. Wagner, P. Vitali, J. Schorm, E. Giroux, Can. J. Chem. 55 (1977) 4028.
[12] E. Barreiro, J.S. Casas, M.D. Couce, A. Sánchez, R. Seoane, J. Sordo, J.M. Varela,
E.M. Vázquez-López, Dalton Trans. (2007) 3074.
The 199Hg NMR spectra of the three complexes show only one
signal each. In CDCl3 the signals for 4, 5 and 6 are at ꢀ820.9, ꢀ861.5
and ꢀ839.4 ppm, respectively, and in dmso the signals range be-
tween ꢀ755.4 and ꢀ788.8 ppm.
[13] J.S. Casas, M.S. García-Tasende, J. Sordo, Coord. Chem. Rev. 193–195 (1999)
283.
[14] F.H. Allen, Acta Crystallogr., Sect. B 58 (2002) 380.
The position of the signal in the spectra in chloroform is close to
those found for thiosemicarbazonates of phenylmercury(II) in
which the metal is tricoordinated [43]. Once again, the difference
between the value in CDCl3 and dmso-d6 suggest that this latter
solvent does not increase the coordination number of the metal
in comparison to that found in the solid state.
[15] C. Gränacher, Helv. Chim. Acta 5 (1922) 610.
[16] E. Campaigne, R.E. Cline, J. Org. Chem. 21 (1956) 32.
[17] (a) Bruker Analytical Instrumentation, SAINT: SAX Area Detector Integration,
1996.;
(b) Enraf-Nonius, CAD-4 Express Software. Version 5.1. Enraf-Nonius, Delft,
The Netherlands, 1995; A.L. Spek, HELENA. A Program for data reduction of CAD4
data. University of Utrecht, The Netherlands, 1997.
[18] G.M. Sheldrick, SADABS, Version 2.03, University of Göttingen, Germany, 2002.
[19] A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr., Sect. A 24 (1968) 351.
[20] A.L. Spek Platon, A Multipurpose Crystallographic Tool, University of Utrecht,
The Netherlands, 1997.
4. Conclusion
[21] G.M. Sheldrick, SHELXS97 and SHELXL97, Programs for the Refinement of Crystal
Structures, University of Göttingen, Germany, 1997.
[22] International Tables for X-ray Crystallography, vol. C, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1995.
[23] L. Zsolnai, ZORTEP. A Program for the Presentation of THERMAL Ellipsoids,
University of Heidelberg, Germany, 1997.
In summary, two types of complexes [HQ]2[Hg(L)2] and
[HQ][PhHg(L)] where HQ is diisopropylammonium and L a bide-
protonated 3-(aryl)-2-sulfanylpropenoic acid have been synthe-
sized and characterized.
[24] MERCURY 1.2. A Program crystal structure visualisation and exploration. The
Cambridge Crystallographic Data Centre. Cambridge. UK, <http://
[25] J.S. Casas, M.S. García-Tasende, A. Sánchez, J. Sordo, E.M. Vázquez-López, Inorg.
Chim. Acta 256 (1997) 211.
[26] U. Heinl, P. Heinse, R. Fröhlich, R. Mattes, Z. Anorg. Allg. 628 (2002) 770.
[27] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th ed., Harper Collins
College Publishers, New York, 1993.
[28] S.S. Batsanov, J. Mol. Struct. (Theochem) 468 (1999) 151.
[29] B.M. Al-Saadi, M. Sandström, Acta. Chem. Scand. 36 (1982) 509.
[30] (a) W. Depmeier, K. Dietrich, K. König, H. Musso, W. Weiss, J. Organomet.
Chem. 314 (1986) C1;
(b) K. Dietrich, K. König, G. Mattern, H. Musso, Chem. Ber. 121 (1988) 1277.
[31] Z. Weiqun, Y. Wen, Q. Lihua, Z. Yong, Y. Zhengfeng, J. Mol. Struct. 749 (2005)
89.
[32] S.W. Ng, Acta Crystallogr. E 59 (2003) 1028.
[33] G.J. Reiß, Acta Crystallogr. E 58 (2002) m47.
[34] J.S. Casas, A. Castiñeiras, M.D. Couce, M.L. Jorge, U. Russo, A. Sánchez, R. Seoane,
J. Sordo, J.M. Varela, Appl. Organomet. Chem. 14 (2000) 421.
[35] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, 5th ed., John Wiley, New York, 1997. p. 60, part B.
[36] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy, 3rd ed., Academic Press Inc., San Diego, 1990. p. 344.
[37] E. Barreiro, J.S. Casas, M.D. Couce, A. Sánchez, J. Sordo, J.M. Varela, E.M.
Vázquez-López, Dalton Trans. (2003) 4754.
Among the [HQ]2[Hg(L)2] complexes this study has led to the
structural characterization of the unusual HgO2S2 kernel built on
the basis of S,O-bidentate donor ligands. The chelating ability of
the corresponding 3-(phenyl)- and 3-(2-furyl)-2-sulfanylpropenoic
acids previously used as chelating agents against mercury intoxica-
tion is thus confirmed. This S,O-coordination mode was recently
described for the widely used chelating agent DMSA, which con-
tains SH and COOH groups, against the diorganotin(IV) fragment
[52]. However, X-ray absorption spectroscopy and DFT calculations
[7] suggest the presence of metallated species mainly supported by
Hg–S bonds in the case of mercury.
The same coordination mode was found for the ligands in the
[HQ][PhHg(L)] complexes and this enabled us to determine the
structural parameters of the CHgSO kernel, which has been identi-
fied previously for S,O-bidentate chelate ligands.
Both types of complex show different supramolecular struc-
tures based on N–Hꢂ ꢂ ꢂO hydrogen bonds, with weak Hgꢂ ꢂ ꢂS interac-
tions also present in some cases.
[38] J.S. Casas, A. Castiñeiras, M.D. Couce, N. Playá, U. Russo, A. Sánchez, J. Sordo,
J.M. Varela, J. Chem. Soc., Dalton Trans. (1998) 1513.
Acknowledgement
[39] K. Gajda-Schrantz, L. Nagy, E. Kuzmann, A. Vertes, J. Holecek, A. Lycka, J. Chem.
Soc., Dalton Trans. (1997) 2201.
[40] J. Holecek, A. Lycka, M. Nadvornik, K. Handlir, Collect. Czech. Chem. Commun.
56 (1991) 1908.
This work was supported by the Ministerio de Educación y
Ciencia, Spain, under project BQU2002-04524-C02-01.
[41] U. Abram, A. Castiñeiras, J. García-Santos, R. Rodríguez-Riobó, Eur. J. Inorg.
Chem. (2006) 3079.
Appendix A. Supplementary data
[42] R.K. Harris, B.E. Mann, NMR and the Periodic Table, Academic Press, London,
1978. p. 270.
[43] T.S. Lobana, A. Sánchez, J.S. Casas, A. Castiñeiras, J. Sordo, M.S. García-Tasende,
E.M. Vázquez-López, J. Chem. Soc., Dalton Trans. (1997) 4289.
CCDC 667931, 667932, 667933, 667934, 667935 and 667936
contain the supplementary crystallographic data for 1, 2, 3, 4, 5